• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
MA Yujie, GE Yizhao, SU Peng, WANG Zijun, LI Yongsheng. The Preparation of LaAl0.5Ni0.5O3 Perovskite and Its Catalytic Performance in Methane Dry Reforming[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 53-61. DOI: 10.6054/j.jscnun.2022045
Citation: MA Yujie, GE Yizhao, SU Peng, WANG Zijun, LI Yongsheng. The Preparation of LaAl0.5Ni0.5O3 Perovskite and Its Catalytic Performance in Methane Dry Reforming[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 53-61. DOI: 10.6054/j.jscnun.2022045

The Preparation of LaAl0.5Ni0.5O3 Perovskite and Its Catalytic Performance in Methane Dry Reforming

More Information
  • Received Date: November 30, 2021
  • Available Online: July 28, 2022
  • The hard template method was used to prepare the mesoporous LaAl1-xAlxO3 perovskite catalyst with a large surface area, which was used for carbon-neutral methane dry reforming for reaction activity test at different temperatures. With scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), N2 adsorption and desorption (BET), H2 temperature programmed reduction (H2-TPR), thermogravimetric analysis (TGA) and other methods, the as-prepared catalyst was characterized. The results showed that the LaAl0.5Ni0.5O3 catalyst exhibited the most excellent activity and stability during the reaction, the initial activity of CH4 and CO2 in the LaAl0.5Ni0.5O3 catalyst reached 69.8% and 81.5% respectively under the conditions of reaction temperature of 750 ℃ and space velocity GHSV=36 000 mL/(g·h). And the CH4 and CO2 activity of the LaAl0.5Ni0.5O3 catalyst reduced by 2.7% and 3.3% respectively after the 25 h stability test. The reason was that the LaAl0.5Ni0.5O3 catalyst obtained more Ni active sites than the LaAl0.7Ni0.3O3 catalyst and the LaAl0.5Ni0.5O3 catalyst had more favorable anti-sintering and anti-carbon deposition ability than the LaAl0.3Ni0.7O3 catalyst.
  • [1]
    李风雷, 尹璐, 赵吉, 等. 以能源转型推进"碳中和"的北欧经验借鉴与中国方案初探[J]. 可再生能源, 2021, 39(10): 1308-1313. doi: 10.3969/j.issn.1671-5292.2021.10.005

    LI F L, YIN L, ZHAO J, et al. The nordic experiences and Chinese choices for improving "Carbon Neutrality" by energy transition[J]. Renewable Energy Resources, 2021, 39(10): 1308-1313. doi: 10.3969/j.issn.1671-5292.2021.10.005
    [2]
    卢金凯, 张梦, 李斌, 等. 功能化氧化石墨烯催化CO2的化学固定[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202103006.htm

    LU J K, ZHANG M, LI B, et al. Chemical fixation of CO2 catalyzed by functionalized graphene oxide[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202103006.htm
    [3]
    SINGH R, DHIR A, MOHAPATRA S, et al. Dry reforming of methane using various catalysts in the process: review[J]. Biomass Convers and Biorefinery, 2020, 10(2): 567-587. doi: 10.1007/s13399-019-00417-1
    [4]
    MOREIRA T, FILHO J, CARVALHO Y, et al. Highly stable low noble metal content rhodium-based catalyst for the dry reforming of methane[J]. Fuel, 2021, 287: 119536/1-10. https://www.sciencedirect.com/science/article/pii/S0016236120325321
    [5]
    ANIL C, MODAK J M, MADRAS G. Syngas production via CO2 reforming of methane over noble metal (Ru, Pt, and Pd) doped LaAlO3 perovskite catalyst[J]. Molecular Catalysis, 2019, 484: 110805/1-11. https://www.sciencedirect.com/science/article/pii/S1226086X13002190
    [6]
    PAN C, GUO Z L, DAI H, et al. Anti-sintering mesoporous Ni-Pd bimetallic catalysts for hydrogen production via dry reforming of methane[J]. International Journal of Hydrogen Energy, 2020, 45(32): 16133-16143. doi: 10.1016/j.ijhydene.2020.04.066
    [7]
    QIN Z Z, CHEN J, XIE X L, et al. CO2 reforming of CH4 to syngas over nickel-based catalysts[J]. Environmental Chemistry Letters, 2020, 18(4): 997-1017. doi: 10.1007/s10311-020-00996-w
    [8]
    BHATTAR S, ABEDIN M A, KANITKAR S, et al. A review on dry reforming of methane over perovskite derived catalysts[J]. Catalysis Today, 2021, 365: 2-23. doi: 10.1016/j.cattod.2020.10.041
    [9]
    RUAN Y Z, ZHAO Y F, LU Y, et al. Mesoporous LaAl0.25Ni0.75O3 perovskite catalyst using SBA-15 as templating agent for methane dry reforming[J]. Microporous and Mesoporous Materials, 2020, 303: 110278/1-43.
    [10]
    RIVAS I, ALVAREZ J, PIETRI E, et al. Perovskite-type oxides in methane dry reforming: effect of their incorporation into a mesoporous SBA-15 silica-host[J]. Catalysis Today, 2009, 149 (3): 388-393. https://www.sciencedirect.com/science/article/pii/S0920586109003459
    [11]
    NAIR M M, KALIAGUINE S, KLEITZ F, et al. Nanocast LaNiO3 perovskites as precursors for the preparation of coke-resistant dry reforming catalysts[J]. ACS Catalysis, 2014, 4 (11): 3837-3846. doi: 10.1021/cs500918c
    [12]
    SONG J W, DUAN X H, ZHANG W W. Methane dry reforming over mesoporous La2O3 supported Ni catalyst for syngas production[J]. Microporous and Mesoporous Materials, 2021, 310: 110587/1-8.
    [13]
    BAI X L, XIE G M, GUO Y, et al. A highly active Ni catalyst supported on Mg-substituted LaAlO3 for carbon dioxide reforming of methane[J]. Catalysis Today, 2021, 368: 78-85. doi: 10.1016/j.cattod.2019.12.033
    [14]
    LEE G, KIM I, YANG I, et al. Effects of the preparation method on the crystallinity and catalytic activity of LaAlO3 perovskites for oxidative coupling of methane[J]. Applied Surface Science, 2018, 429: 55-61. doi: 10.1016/j.apsusc.2017.08.092
    [15]
    WANG Z J, WANG H, LIU Y, et al. La1-xCaxFe1-xCoxO3, a stable catalyst for oxidative steam reforming of ethanol to produce hydrogen[J]. RSC Advances, 2013, 3(25): 10027-10036. doi: 10.1039/c3ra23487h
    [16]
    WANG N, YU X P, WANG Y, et al. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier[J]. Catalysis Today, 2013, 212: 98-107. doi: 10.1016/j.cattod.2012.07.022
    [17]
    LU Y, GUO D, RUAN Y Z, et al. Facile one-pot synthesis of Ni@HSS as a novel yolk-shell structure catalyst for dry reforming of methane[J]. Journal of CO2 Utilization, 2018, 24: 190-199. doi: 10.1016/j.jcou.2018.01.003
    [18]
    SAGAR T V, PADMAKAR D, LINGAIAH N, et al. Syngas production by CO2 reforming of methane on LaNixAl1-xO3 perovskite catalysts: influence of method of preparation[J]. Journal of Chemical Sciences, 2017, 129 (11): 1787-1794. doi: 10.1007/s12039-017-1359-2
    [19]
    WANG N, SHEN K, HUANG L, et al. Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas[J]. ACS Catalysis, 2013, 3 (7): 1638-1651. doi: 10.1021/cs4003113
    [20]
    TAHERIAN Z, KHATAEE A, OROOJI Y. Nickel-based nanocatalysts promoted over MgO-modified SBA-16 for dry reforming of methane for syngas production: impact of support and promoters[J]. Journal of the Energy Institute, 2021, 97, 100-108. doi: 10.1016/j.joei.2021.04.005
    [21]
    CHEN C F, MENG Z J, WANG Z J. Large specific surface area macroporous nanocast LaFe1-xNixO3: a stable catalyst for catalytic methane dry reforming[J]. Journal of Chemistry, 2019, 2019: 1-9. https://www.hindawi.com/journals/jchem/2019/7851416/
    [22]
    Li Z W, KAWI S. Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4: influence of Ni precursors on structure, sintering, and carbon resistance[J]. Catalysis Science & Technology, 2018, 8(7): 1915-1922. https://pubs.rsc.org/en/content/articlelanding/2018/cy/c8cy00024g#!
    [23]
    ZHANG Q, SUN M, NING P, et al. Effect of thermal induction temperature on re-dispersion behavior of Ni nanoparticles over Ni/SBA-15 for dry reforming of methane[J]. Applied Surface Science, 2019, 469: 368-377. doi: 10.1016/j.apsusc.2018.10.222
    [24]
    CHEN X, YIN L, LONG K, et al. The reconstruction of Ni particles on SBA-15 by thermal activation for dry reforming of methane with excellent resistant to carbon deposition[J]. Journal of the Energy Institute, 2020, 93(6): 2255-2263. doi: 10.1016/j.joei.2020.06.008
    [25]
    WANG H Q, DONG X L, ZHAO T T, et al. Dry reforming of methane over bimetallic Ni-Co catalyst prepared from La(CoxNi1-x)0.5Fe0.5O3 perovskite precursor: catalytic activity and coking resistance[J]. Applied Catalysis B: Environmental, 2019, 245: 302-313. doi: 10.1016/j.apcatb.2018.12.072
    [26]
    WANG M, ZHAO T T, DONG X L, et al. Effects of Ce substitution at the A-site of LaNi0.5Fe0.5O3 perovskite on the enhanced catalytic activity for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2018, 224: 214-221. doi: 10.1016/j.apcatb.2017.10.022
    [27]
    JAFARBEGLOO M, TARLANI A, MESBATH W A, et al. One-pot synthesis of NiO-MgO nanocatalysts for CO2 reforming of methane: the influence of active metal content on catalytic performance[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1165-1173. doi: 10.1016/j.jngse.2015.09.065
    [28]
    DAI H, YU P X, LIU H S, et al. Ni-Based catalysts supported on natural clay of attapulgite applied in the dry reforming of methane reaction[J]. New Journal of Chemistry, 2020, 44 (37): 16101-16109. doi: 10.1039/D0NJ03069D
    [29]
    LI L, ZHANG L M, SHI X F, et al. Carbon dioxide reforming of methane over nickel catalysts supported on mesoporous MgO[J]. Journal of Porous Materials, 2014, 21(2): 217-224. doi: 10.1007/s10934-013-9766-3
    [30]
    ZHANG Q L, WANG J, NING P, et al. Dry reforming of methane over Ni/SBA-15 catalysts prepared by homogeneous precipitation method[J]. Korean Journal of Chemical Engineering, 2017, 34 (11): 2823-2831. doi: 10.1007/s11814-017-0182-2
  • Cited by

    Periodical cited type(6)

    1. 方艳林,王升帅,张伟,张妮,谢璇,张厚勇. 基于PEMS的非四机械尾气碳排放特征探析. 环境监控与预警. 2025(01): 98-102 .
    2. 吴雨涟,杨洁,邵智娟,沈春其,裴程伟,秦龙飞,郑嘉兴,徐婷婷,阚诗烨,宋程璐,崔璀. 苏州市机动车排放清单及特征研究. 环境科学学报. 2024(09): 129-139 .
    3. 陈佳昊,项雅静. 基于拥堵系数的上海市道路高分辨率碳排放时空分配方法研究. 环境科学与管理. 2024(11): 16-21 .
    4. 石文哲,王峰,付合英,李忠飞,王亮,于海洋,唐忠锋. 基于全生命周期法的矿用柴油重卡碳核算. 环境工程学报. 2023(06): 1907-1914 .
    5. 菅月诚,彭娜娜,高艳珊,王强. “双碳”背景下细颗粒物和臭氧污染研究进展. 能源环境保护. 2023(05): 190-200 .
    6. 代洪娜,曾煜磊,施庆利,孙婷. 碳达峰与碳中和背景下省域高速公路网碳排放精细化测算方法. 华南师范大学学报(自然科学版). 2023(04): 1-13 .

    Other cited types(6)

Catalog

    Article views (887) PDF downloads (47) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return