Citation: | MA Yujie, GE Yizhao, SU Peng, WANG Zijun, LI Yongsheng. The Preparation of LaAl0.5Ni0.5O3 Perovskite and Its Catalytic Performance in Methane Dry Reforming[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 53-61. DOI: 10.6054/j.jscnun.2022045 |
[1] |
李风雷, 尹璐, 赵吉, 等. 以能源转型推进"碳中和"的北欧经验借鉴与中国方案初探[J]. 可再生能源, 2021, 39(10): 1308-1313. doi: 10.3969/j.issn.1671-5292.2021.10.005
LI F L, YIN L, ZHAO J, et al. The nordic experiences and Chinese choices for improving "Carbon Neutrality" by energy transition[J]. Renewable Energy Resources, 2021, 39(10): 1308-1313. doi: 10.3969/j.issn.1671-5292.2021.10.005
|
[2] |
卢金凯, 张梦, 李斌, 等. 功能化氧化石墨烯催化CO2的化学固定[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202103006.htm
LU J K, ZHANG M, LI B, et al. Chemical fixation of CO2 catalyzed by functionalized graphene oxide[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202103006.htm
|
[3] |
SINGH R, DHIR A, MOHAPATRA S, et al. Dry reforming of methane using various catalysts in the process: review[J]. Biomass Convers and Biorefinery, 2020, 10(2): 567-587. doi: 10.1007/s13399-019-00417-1
|
[4] |
MOREIRA T, FILHO J, CARVALHO Y, et al. Highly stable low noble metal content rhodium-based catalyst for the dry reforming of methane[J]. Fuel, 2021, 287: 119536/1-10. https://www.sciencedirect.com/science/article/pii/S0016236120325321
|
[5] |
ANIL C, MODAK J M, MADRAS G. Syngas production via CO2 reforming of methane over noble metal (Ru, Pt, and Pd) doped LaAlO3 perovskite catalyst[J]. Molecular Catalysis, 2019, 484: 110805/1-11. https://www.sciencedirect.com/science/article/pii/S1226086X13002190
|
[6] |
PAN C, GUO Z L, DAI H, et al. Anti-sintering mesoporous Ni-Pd bimetallic catalysts for hydrogen production via dry reforming of methane[J]. International Journal of Hydrogen Energy, 2020, 45(32): 16133-16143. doi: 10.1016/j.ijhydene.2020.04.066
|
[7] |
QIN Z Z, CHEN J, XIE X L, et al. CO2 reforming of CH4 to syngas over nickel-based catalysts[J]. Environmental Chemistry Letters, 2020, 18(4): 997-1017. doi: 10.1007/s10311-020-00996-w
|
[8] |
BHATTAR S, ABEDIN M A, KANITKAR S, et al. A review on dry reforming of methane over perovskite derived catalysts[J]. Catalysis Today, 2021, 365: 2-23. doi: 10.1016/j.cattod.2020.10.041
|
[9] |
RUAN Y Z, ZHAO Y F, LU Y, et al. Mesoporous LaAl0.25Ni0.75O3 perovskite catalyst using SBA-15 as templating agent for methane dry reforming[J]. Microporous and Mesoporous Materials, 2020, 303: 110278/1-43.
|
[10] |
RIVAS I, ALVAREZ J, PIETRI E, et al. Perovskite-type oxides in methane dry reforming: effect of their incorporation into a mesoporous SBA-15 silica-host[J]. Catalysis Today, 2009, 149 (3): 388-393. https://www.sciencedirect.com/science/article/pii/S0920586109003459
|
[11] |
NAIR M M, KALIAGUINE S, KLEITZ F, et al. Nanocast LaNiO3 perovskites as precursors for the preparation of coke-resistant dry reforming catalysts[J]. ACS Catalysis, 2014, 4 (11): 3837-3846. doi: 10.1021/cs500918c
|
[12] |
SONG J W, DUAN X H, ZHANG W W. Methane dry reforming over mesoporous La2O3 supported Ni catalyst for syngas production[J]. Microporous and Mesoporous Materials, 2021, 310: 110587/1-8.
|
[13] |
BAI X L, XIE G M, GUO Y, et al. A highly active Ni catalyst supported on Mg-substituted LaAlO3 for carbon dioxide reforming of methane[J]. Catalysis Today, 2021, 368: 78-85. doi: 10.1016/j.cattod.2019.12.033
|
[14] |
LEE G, KIM I, YANG I, et al. Effects of the preparation method on the crystallinity and catalytic activity of LaAlO3 perovskites for oxidative coupling of methane[J]. Applied Surface Science, 2018, 429: 55-61. doi: 10.1016/j.apsusc.2017.08.092
|
[15] |
WANG Z J, WANG H, LIU Y, et al. La1-xCaxFe1-xCoxO3, a stable catalyst for oxidative steam reforming of ethanol to produce hydrogen[J]. RSC Advances, 2013, 3(25): 10027-10036. doi: 10.1039/c3ra23487h
|
[16] |
WANG N, YU X P, WANG Y, et al. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier[J]. Catalysis Today, 2013, 212: 98-107. doi: 10.1016/j.cattod.2012.07.022
|
[17] |
LU Y, GUO D, RUAN Y Z, et al. Facile one-pot synthesis of Ni@HSS as a novel yolk-shell structure catalyst for dry reforming of methane[J]. Journal of CO2 Utilization, 2018, 24: 190-199. doi: 10.1016/j.jcou.2018.01.003
|
[18] |
SAGAR T V, PADMAKAR D, LINGAIAH N, et al. Syngas production by CO2 reforming of methane on LaNixAl1-xO3 perovskite catalysts: influence of method of preparation[J]. Journal of Chemical Sciences, 2017, 129 (11): 1787-1794. doi: 10.1007/s12039-017-1359-2
|
[19] |
WANG N, SHEN K, HUANG L, et al. Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas[J]. ACS Catalysis, 2013, 3 (7): 1638-1651. doi: 10.1021/cs4003113
|
[20] |
TAHERIAN Z, KHATAEE A, OROOJI Y. Nickel-based nanocatalysts promoted over MgO-modified SBA-16 for dry reforming of methane for syngas production: impact of support and promoters[J]. Journal of the Energy Institute, 2021, 97, 100-108. doi: 10.1016/j.joei.2021.04.005
|
[21] |
CHEN C F, MENG Z J, WANG Z J. Large specific surface area macroporous nanocast LaFe1-xNixO3: a stable catalyst for catalytic methane dry reforming[J]. Journal of Chemistry, 2019, 2019: 1-9. https://www.hindawi.com/journals/jchem/2019/7851416/
|
[22] |
Li Z W, KAWI S. Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4: influence of Ni precursors on structure, sintering, and carbon resistance[J]. Catalysis Science & Technology, 2018, 8(7): 1915-1922. https://pubs.rsc.org/en/content/articlelanding/2018/cy/c8cy00024g#!
|
[23] |
ZHANG Q, SUN M, NING P, et al. Effect of thermal induction temperature on re-dispersion behavior of Ni nanoparticles over Ni/SBA-15 for dry reforming of methane[J]. Applied Surface Science, 2019, 469: 368-377. doi: 10.1016/j.apsusc.2018.10.222
|
[24] |
CHEN X, YIN L, LONG K, et al. The reconstruction of Ni particles on SBA-15 by thermal activation for dry reforming of methane with excellent resistant to carbon deposition[J]. Journal of the Energy Institute, 2020, 93(6): 2255-2263. doi: 10.1016/j.joei.2020.06.008
|
[25] |
WANG H Q, DONG X L, ZHAO T T, et al. Dry reforming of methane over bimetallic Ni-Co catalyst prepared from La(CoxNi1-x)0.5Fe0.5O3 perovskite precursor: catalytic activity and coking resistance[J]. Applied Catalysis B: Environmental, 2019, 245: 302-313. doi: 10.1016/j.apcatb.2018.12.072
|
[26] |
WANG M, ZHAO T T, DONG X L, et al. Effects of Ce substitution at the A-site of LaNi0.5Fe0.5O3 perovskite on the enhanced catalytic activity for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2018, 224: 214-221. doi: 10.1016/j.apcatb.2017.10.022
|
[27] |
JAFARBEGLOO M, TARLANI A, MESBATH W A, et al. One-pot synthesis of NiO-MgO nanocatalysts for CO2 reforming of methane: the influence of active metal content on catalytic performance[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1165-1173. doi: 10.1016/j.jngse.2015.09.065
|
[28] |
DAI H, YU P X, LIU H S, et al. Ni-Based catalysts supported on natural clay of attapulgite applied in the dry reforming of methane reaction[J]. New Journal of Chemistry, 2020, 44 (37): 16101-16109. doi: 10.1039/D0NJ03069D
|
[29] |
LI L, ZHANG L M, SHI X F, et al. Carbon dioxide reforming of methane over nickel catalysts supported on mesoporous MgO[J]. Journal of Porous Materials, 2014, 21(2): 217-224. doi: 10.1007/s10934-013-9766-3
|
[30] |
ZHANG Q L, WANG J, NING P, et al. Dry reforming of methane over Ni/SBA-15 catalysts prepared by homogeneous precipitation method[J]. Korean Journal of Chemical Engineering, 2017, 34 (11): 2823-2831. doi: 10.1007/s11814-017-0182-2
|