• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHEN Jian, SUN Shichao, LI Mingdi, JIAO Hongyu, ZHANG Yifeng, WANG Yetai. The Progress in the Research on Optimizing CO2 Capture Performance of CaO/CuO Composites[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 43-52. DOI: 10.6054/j.jscnun.2022043
Citation: CHEN Jian, SUN Shichao, LI Mingdi, JIAO Hongyu, ZHANG Yifeng, WANG Yetai. The Progress in the Research on Optimizing CO2 Capture Performance of CaO/CuO Composites[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 43-52. DOI: 10.6054/j.jscnun.2022043

The Progress in the Research on Optimizing CO2 Capture Performance of CaO/CuO Composites

More Information
  • Received Date: March 11, 2022
  • Available Online: July 28, 2022
  • The development of efficient and low-cost CO2 capture technology is an important approach for China to achieve the goal of "carbon peak and carbon neutrality". The process of calcium looping integrated with chemical looping combustion based on CaO/CuO composites is a modified calcium looping process. In such a process, chemical looping combustion is coupled to substitute the energy-intensive air separation unit commonly used in the calcium looping, thus significantly reducing the system's energy consumption and improving the economy. The calcium looping integrated with chemical looping combustion process has attracted great attention worldwide. The basic principle of the calcium looping integrated with chemical looping combustion process is introduced, and the major challenge that the process faces is described, i.e., a rapid decline in CO2 capture performance of CaO/CuO composites during cycling operations. Moreover, the modification methods to enhance the CO2 capture performance of CaO/CuO composites are reviewed, mainly including the incorporation of stabilizer, steam activation and high-temperature thermal pretreatment. Finally, the advantages and disadvantages of various modification methods are analyzed comprehensively, and the direction to future research is discussed.
  • [1]
    BUI M, ADJIMAN C S, BARDOW A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. https://research.monash.edu/en/publications/carbon-capture-and-storage-ccs-the-way-forward
    [2]
    MA X, LI Y, YAN X, et al. Preparation of a morph-gene-tic CaO-based sorbent using paper fibre as a biotemplate for enhanced CO2 capture[J]. Chemical Engineering Journal, 2019, 361: 235-244. doi: 10.1016/j.cej.2018.12.061
    [3]
    卢金凯, 张梦, 李斌, 等. 功能化氧化石墨烯催化CO2的化学固定[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202103006.htm

    LU J K, ZHANG M, LI B, et al. Chemical fixation of CO2 catalyzed by functionalized graphene oxide[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202103006.htm
    [4]
    卢金凯, 张梦, 初秉宪, 等. 环状碳酸酯的固载型离子液体催化合成[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202106007.htm

    LU J K, ZHANG M, CHU B X, et al. The synthesis of cyclic carbonate catalyzed by immobilized ionic liquid[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(6): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202106007.htm
    [5]
    BHOWN A S, FREEMAN B C. Analysis and status of post-combustion carbon dioxide capture technologies[J]. Environmental Science and Technology, 2011, 45(20): 8624-8632. doi: 10.1021/es104291d
    [6]
    CHEN J, DUAN L, SUN Z. Accurate control of cage-like CaO hollow microspheres for enhanced CO2 capture in calcium looping via a template-assisted synthesis approach[J]. Environmental Science and Technology, 2019, 53(4): 2249-2259. doi: 10.1021/acs.est.8b06138
    [7]
    ABANADES J C, MURILLO R, FERNANDEZ J R, et al. New CO2 capture process for hydrogen production combining Ca and Cu chemical loops[J]. Environmental Science and Technology, 2010, 44(17): 6901-6904. doi: 10.1021/es101707t
    [8]
    MANOVIC V, ANTHONY E J. Integration of calcium and chemical looping combustion using composite CaO/CuO-based materials[J]. Environmental Science and Techno-logy, 2011, 45(24): 10750-10756. doi: 10.1021/es202292c
    [9]
    OZCAN D C, MACCHI A, LU D Y, et al. Ca-Cu looping process for CO2 capture from a power plant and its comparison with Ca-looping, oxy-combustion and amine-based CO2 capture processes[J]. International Journal of Greenhouse Gas Control, 2015, 43: 198-212. doi: 10.1016/j.ijggc.2015.10.021
    [10]
    DUHOUX B, MEHRANI P, LU D Y, et al. Combined calcium looping and chemical looping combustion for post-combustion carbon dioxide capture: process simulation and sensitivity analysis[J]. Energy Technology, 2016, 4(10): 1158-1170. doi: 10.1002/ente.201600024
    [11]
    CHEN J, DONAT F, DUAN L, et al. Metal-oxide stabilized CaO/CuO composites for the integrated Ca/Cu looping process[J]. Chemical Engineering Journal, 2021, 403: 126330/1-12.
    [12]
    MA J, MEI D, PENG W, et al. On the high performance of a core-shell structured CaO-CuO/MgO@Al2O3 material in calcium looping integrated with chemical looping combustion (CaL-CLC)[J]. Chemical Engineering Journal, 2019, 368: 504-512. doi: 10.1016/j.cej.2019.02.188
    [13]
    KIERZKOWSKA A M, MVLLER C R. Sol-gel-derived, calcium-based, copper-functionalised CO2 Sorbents for an integrated chemical looping combustion-calcium looping CO2 capture process[J]. ChemPlusChem, 2013, 78(1): 92-100. doi: 10.1002/cplu.201200232
    [14]
    QIN C, YIN J, LIU W, et al. Behavior of CaO/CuO based composite in a combined calcium and copper chemical looping process[J]. Industrial and Engineering Chemistry Research, 2012, 51(38): 12274-12281.
    [15]
    RECIO A, LIEW S, LU D, et al. The effects of thermal treatment and steam addition on integrated CuO/CaO chemical looping combustion for CO2 capture[J]. Technologies, 2016, 4: 11/1-12. https://www.mdpi.com/2227-7080/4/2/11
    [16]
    SHIMIZU T, HIRAMA T, HOSODA H, et al. A twin fluid-bed reactor for removal of CO2 from combustion processes[J]. Chemical Engineering Research and Design, 1999, 77(1): 62-68. doi: 10.1205/026387699525882
    [17]
    STRÖHLE J, JUNK M, KREMER J, et al. Carbonate looping experiments in a 1 MWth pilot plant and model validation[J]. Fuel, 2014, 127: 13-22. doi: 10.1016/j.fuel.2013.12.043
    [18]
    ARIAS B, DIEGO M E, ABANADES J C, et al. Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot[J]. International Journal of Greenhouse Gas Control, 2013, 18: 237-245. doi: 10.1016/j.ijggc.2013.07.014
    [19]
    CHANG M H, CHEN W C, HUANG C M, et al. Design and experimental testing of a 1.9 MWth calcium looping pilot plant[J]. Energy Procedia, 2014, 63: 2100-2108. doi: 10.1016/j.egypro.2014.11.226
    [20]
    CHEN J, DUAN L, SUN Z. Review on the development of sorbents for calcium looping[J]. Energy and Fuels, 2020, 34(7): 7806-7836. doi: 10.1021/acs.energyfuels.0c00682
    [21]
    MARTÍNEZ I, ROMANO M C, FERNÁNDEZ J R, et al. Process design of a hydrogen production plant from natural gas with CO2 capture based on a novel Ca/Cu chemical loop[J]. Applied Energy, 2014, 114: 192-208. doi: 10.1016/j.apenergy.2013.09.026
    [22]
    FERNÁNDEZ J R, ABANADES J C, MURILLO R, et al. Conceptual design of a hydrogen production process from natural gas with CO2 capture using a Ca-Cu chemical loop[J]. International Journal of Greenhouse Gas Control, 2012, 6: 126-141. doi: 10.1016/j.ijggc.2011.11.014
    [23]
    FERNÁNDEZ J R, MARTÍNEZ I, ABANADES J C, et al. Conceptual design of a Ca-Cu chemical looping process for hydrogen production in integrated steelworks[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11023-11037. doi: 10.1016/j.ijhydene.2017.02.141
    [24]
    MARTÍNEZ I, ARMAROLI D, GAZZANI M, et al. Integration of the Ca-Cu process in ammonia production plants[J]. Industrial and Engineering Chemistry Research, 2017, 56(9): 2526-2539. doi: 10.1021/acs.iecr.6b04615
    [25]
    MARTÍNEZ I, MURILLO R, GRASA G, et al. Integrated combined cycle from natural gas with CO2 capture using a Ca-Cu chemical loop[J]. AIChE Journal, 2013, 59(8): 2780-2794. doi: 10.1002/aic.14054
    [26]
    CHEN J, DUAN L, DONAT F, et al. Self-activated, nanostructured composite for improved CaL-CLC technology[J]. Chemical Engineering Journal, 2018, 351: 1038-1046. doi: 10.1016/j.cej.2018.06.176
    [27]
    CHEN J, DUAN L, SHI T, et al. A facile one-pot synthesis of CaO/CuO hollow microspheres featuring highly porous shells for enhanced CO2 capture in a combined Ca-Cu looping process via a template-free synthesis approach[J]. Journal of Materials Chemistry A, 2019, 7(37): 21096-21105. doi: 10.1039/C9TA04513A
    [28]
    QIN C, YIN J, LUO C, et al. Enhancing the performance of CaO/CuO based composite for CO2 capture in a combined Ca-Cu chemical looping process[J]. Chemical Engineering Journal, 2013, 228: 75-86. doi: 10.1016/j.cej.2013.04.115
    [29]
    RIDHA F N, LU D, MACCHI A, et al. Combined calcium looping and chemical looping combustion cycles with CaO-CuO pellets in a fixed bed reactor[J]. Fuel, 2015, 153: 202-209. doi: 10.1016/j.fuel.2015.02.069
    [30]
    CHEN J, SHI T, DUAN L, et al. Microemulsion-derived, nanostructured CaO/CuO composites with controllable particle grain size to enhance cyclic CO2 capture performance for combined Ca/Cu looping process[J]. Chemical Engineering Journal, 2020, 393: 124716/1-9.
    [31]
    ZHAO M, SHI J, ZHONG X, et al. A novel calcium looping absorbent incorporated with polymorphic spacers for hydrogen production and CO2 capture[J]. Energy and Environmental Science, 2014, 7(10): 3291-3295. doi: 10.1039/C4EE01281J
    [32]
    SARRIÓN B, PEREJÓN A, SÁNCHEZ-JIMÉNEZ P E, et al. Role of calcium looping conditions on the performance of natural and synthetic Ca-based materials for energy storage[J]. Journal of CO2 Utilization, 2018, 28: 374-384. doi: 10.1016/j.jcou.2018.10.018
    [33]
    ZHANG X, LI Z, PENG Y, et al. Investigation on a novel CaO-Y2O3 sorbent for efficient CO2 mitigation[J]. Chemical Engineering Journal, 2014, 243: 297-304. doi: 10.1016/j.cej.2014.01.017
    [34]
    WANG S, FAN S, FAN L, et al. Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles[J]. Environmental Science and Technology, 2015, 49(8): 5021-5027. doi: 10.1021/es5052843
    [35]
    HU Y, LIU W, SUN J, et al. Incorporation of CaO into novel Nd2O3 inert solid support for high temperature CO2 capture[J]. Chemical Engineering Journal, 2015, 273: 333-343. doi: 10.1016/j.cej.2015.03.074
    [36]
    HU Y, LIU W, SUN J, et al. High temperature CO2 capture on novel Yb2O3-supported CaO-based sorbents[J]. Energy and Fuels, 2016, 30(8): 6606-6613. doi: 10.1021/acs.energyfuels.6b01185
    [37]
    KOIRALA R, REDDY G K, SMIRNIOTIS P G. Single Nozzle flame-made highly durable metal doped Ca-based sorbents for CO2 capture at high temperature[J]. Energy and Fuels, 2012, 26(5): 3103-3109. doi: 10.1021/ef3004015
    [38]
    SU C, DUAN L, DONAT F, et al. From waste to high value utilization of spent bleaching clay in synthesizing high-performance calcium-based sorbent for CO2 capture[J]. Applied Energy, 2018, 210: 117-126. https://www.sciencedirect.com/science/article/pii/S0306261917315507
    [39]
    ERANS M, MANOVIC V, ANTHONY E J. Calcium looping sorbents for CO2 capture[J]. Applied Energy, 2016, 180: 722-742. https://www.sciencedirect.com/science/article/pii/S0306261916310157
    [40]
    MANOVIC V, ANTHONY E J. Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles[J]. Environmental Science and Technology, 2008, 42(11): 4170-4174.
    [41]
    ZHANG L, ZHANG B, YANG Z, et al. The role of water on the performance of calcium oxide-based sorbents for carbon dioxide capture: a review[J]. Energy Technology, 2015, 3(1): 10-19.
  • Cited by

    Periodical cited type(7)

    1. 高李帆,郑雅文,何松,杨智,王珺瑶,曾雪兰. 新型钙铜-联合循环燃烧后CO_2捕集技术的工艺模拟与分析. 低碳化学与化工. 2025(02): 127-136 .
    2. 李铭迪,李广华,陈健,胡焰彬,李友势. 掺混含氧燃料对柴油模型燃料燃烧过程的影响. 华南师范大学学报(自然科学版). 2024(02): 11-17 .
    3. 陈健,李友势,陆新元,汤贺丹,陈费强,何珺杰,栗勇,孙世超. CeO_2负载钙铜复合纳米小球的合成及其热化学储能特性. 华南师范大学学报(自然科学版). 2024(02): 55-61 .
    4. 王梦茹,孙希瑞,张浩煜,陈健,李友势. 支撑体改性对钙铜复合材料热化学储能特性的影响. 储能科学与技术. 2024(12): 4290-4298 .
    5. 汤贺丹,叶涵,张友进,沈睿,卢文中,陈健,李友势,李铭迪. Y_2O_3/ZrO_2共同负载铜钙复合材料的制备及其热化学储能特性. 储能科学与技术. 2024(12): 4310-4318 .
    6. 张振东,唐佑宁,伍卓汉. 基于天然气联合循环发电厂CO_2捕集与选择性废气再循环的Exergy分析. 华南师范大学学报(自然科学版). 2023(03): 1-8 .
    7. 陈健,李友势,黄昌强,薛元朝,孙吴皓,汤贺丹,戴永鑫,姚宇诚,李铭迪,胡焰彬,孙世超. 钙铜复合吸收剂的一步法合成及其CO_2捕集性能. 华南师范大学学报(自然科学版). 2023(05): 1-7 .

    Other cited types(0)

Catalog

    Article views (1106) PDF downloads (69) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return