Citation: | CHEN Jian, SUN Shichao, LI Mingdi, JIAO Hongyu, ZHANG Yifeng, WANG Yetai. The Progress in the Research on Optimizing CO2 Capture Performance of CaO/CuO Composites[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 43-52. DOI: 10.6054/j.jscnun.2022043 |
[1] |
BUI M, ADJIMAN C S, BARDOW A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. https://research.monash.edu/en/publications/carbon-capture-and-storage-ccs-the-way-forward
|
[2] |
MA X, LI Y, YAN X, et al. Preparation of a morph-gene-tic CaO-based sorbent using paper fibre as a biotemplate for enhanced CO2 capture[J]. Chemical Engineering Journal, 2019, 361: 235-244. doi: 10.1016/j.cej.2018.12.061
|
[3] |
卢金凯, 张梦, 李斌, 等. 功能化氧化石墨烯催化CO2的化学固定[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202103006.htm
LU J K, ZHANG M, LI B, et al. Chemical fixation of CO2 catalyzed by functionalized graphene oxide[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202103006.htm
|
[4] |
卢金凯, 张梦, 初秉宪, 等. 环状碳酸酯的固载型离子液体催化合成[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202106007.htm
LU J K, ZHANG M, CHU B X, et al. The synthesis of cyclic carbonate catalyzed by immobilized ionic liquid[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(6): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202106007.htm
|
[5] |
BHOWN A S, FREEMAN B C. Analysis and status of post-combustion carbon dioxide capture technologies[J]. Environmental Science and Technology, 2011, 45(20): 8624-8632. doi: 10.1021/es104291d
|
[6] |
CHEN J, DUAN L, SUN Z. Accurate control of cage-like CaO hollow microspheres for enhanced CO2 capture in calcium looping via a template-assisted synthesis approach[J]. Environmental Science and Technology, 2019, 53(4): 2249-2259. doi: 10.1021/acs.est.8b06138
|
[7] |
ABANADES J C, MURILLO R, FERNANDEZ J R, et al. New CO2 capture process for hydrogen production combining Ca and Cu chemical loops[J]. Environmental Science and Technology, 2010, 44(17): 6901-6904. doi: 10.1021/es101707t
|
[8] |
MANOVIC V, ANTHONY E J. Integration of calcium and chemical looping combustion using composite CaO/CuO-based materials[J]. Environmental Science and Techno-logy, 2011, 45(24): 10750-10756. doi: 10.1021/es202292c
|
[9] |
OZCAN D C, MACCHI A, LU D Y, et al. Ca-Cu looping process for CO2 capture from a power plant and its comparison with Ca-looping, oxy-combustion and amine-based CO2 capture processes[J]. International Journal of Greenhouse Gas Control, 2015, 43: 198-212. doi: 10.1016/j.ijggc.2015.10.021
|
[10] |
DUHOUX B, MEHRANI P, LU D Y, et al. Combined calcium looping and chemical looping combustion for post-combustion carbon dioxide capture: process simulation and sensitivity analysis[J]. Energy Technology, 2016, 4(10): 1158-1170. doi: 10.1002/ente.201600024
|
[11] |
CHEN J, DONAT F, DUAN L, et al. Metal-oxide stabilized CaO/CuO composites for the integrated Ca/Cu looping process[J]. Chemical Engineering Journal, 2021, 403: 126330/1-12.
|
[12] |
MA J, MEI D, PENG W, et al. On the high performance of a core-shell structured CaO-CuO/MgO@Al2O3 material in calcium looping integrated with chemical looping combustion (CaL-CLC)[J]. Chemical Engineering Journal, 2019, 368: 504-512. doi: 10.1016/j.cej.2019.02.188
|
[13] |
KIERZKOWSKA A M, MVLLER C R. Sol-gel-derived, calcium-based, copper-functionalised CO2 Sorbents for an integrated chemical looping combustion-calcium looping CO2 capture process[J]. ChemPlusChem, 2013, 78(1): 92-100. doi: 10.1002/cplu.201200232
|
[14] |
QIN C, YIN J, LIU W, et al. Behavior of CaO/CuO based composite in a combined calcium and copper chemical looping process[J]. Industrial and Engineering Chemistry Research, 2012, 51(38): 12274-12281.
|
[15] |
RECIO A, LIEW S, LU D, et al. The effects of thermal treatment and steam addition on integrated CuO/CaO chemical looping combustion for CO2 capture[J]. Technologies, 2016, 4: 11/1-12. https://www.mdpi.com/2227-7080/4/2/11
|
[16] |
SHIMIZU T, HIRAMA T, HOSODA H, et al. A twin fluid-bed reactor for removal of CO2 from combustion processes[J]. Chemical Engineering Research and Design, 1999, 77(1): 62-68. doi: 10.1205/026387699525882
|
[17] |
STRÖHLE J, JUNK M, KREMER J, et al. Carbonate looping experiments in a 1 MWth pilot plant and model validation[J]. Fuel, 2014, 127: 13-22. doi: 10.1016/j.fuel.2013.12.043
|
[18] |
ARIAS B, DIEGO M E, ABANADES J C, et al. Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot[J]. International Journal of Greenhouse Gas Control, 2013, 18: 237-245. doi: 10.1016/j.ijggc.2013.07.014
|
[19] |
CHANG M H, CHEN W C, HUANG C M, et al. Design and experimental testing of a 1.9 MWth calcium looping pilot plant[J]. Energy Procedia, 2014, 63: 2100-2108. doi: 10.1016/j.egypro.2014.11.226
|
[20] |
CHEN J, DUAN L, SUN Z. Review on the development of sorbents for calcium looping[J]. Energy and Fuels, 2020, 34(7): 7806-7836. doi: 10.1021/acs.energyfuels.0c00682
|
[21] |
MARTÍNEZ I, ROMANO M C, FERNÁNDEZ J R, et al. Process design of a hydrogen production plant from natural gas with CO2 capture based on a novel Ca/Cu chemical loop[J]. Applied Energy, 2014, 114: 192-208. doi: 10.1016/j.apenergy.2013.09.026
|
[22] |
FERNÁNDEZ J R, ABANADES J C, MURILLO R, et al. Conceptual design of a hydrogen production process from natural gas with CO2 capture using a Ca-Cu chemical loop[J]. International Journal of Greenhouse Gas Control, 2012, 6: 126-141. doi: 10.1016/j.ijggc.2011.11.014
|
[23] |
FERNÁNDEZ J R, MARTÍNEZ I, ABANADES J C, et al. Conceptual design of a Ca-Cu chemical looping process for hydrogen production in integrated steelworks[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11023-11037. doi: 10.1016/j.ijhydene.2017.02.141
|
[24] |
MARTÍNEZ I, ARMAROLI D, GAZZANI M, et al. Integration of the Ca-Cu process in ammonia production plants[J]. Industrial and Engineering Chemistry Research, 2017, 56(9): 2526-2539. doi: 10.1021/acs.iecr.6b04615
|
[25] |
MARTÍNEZ I, MURILLO R, GRASA G, et al. Integrated combined cycle from natural gas with CO2 capture using a Ca-Cu chemical loop[J]. AIChE Journal, 2013, 59(8): 2780-2794. doi: 10.1002/aic.14054
|
[26] |
CHEN J, DUAN L, DONAT F, et al. Self-activated, nanostructured composite for improved CaL-CLC technology[J]. Chemical Engineering Journal, 2018, 351: 1038-1046. doi: 10.1016/j.cej.2018.06.176
|
[27] |
CHEN J, DUAN L, SHI T, et al. A facile one-pot synthesis of CaO/CuO hollow microspheres featuring highly porous shells for enhanced CO2 capture in a combined Ca-Cu looping process via a template-free synthesis approach[J]. Journal of Materials Chemistry A, 2019, 7(37): 21096-21105. doi: 10.1039/C9TA04513A
|
[28] |
QIN C, YIN J, LUO C, et al. Enhancing the performance of CaO/CuO based composite for CO2 capture in a combined Ca-Cu chemical looping process[J]. Chemical Engineering Journal, 2013, 228: 75-86. doi: 10.1016/j.cej.2013.04.115
|
[29] |
RIDHA F N, LU D, MACCHI A, et al. Combined calcium looping and chemical looping combustion cycles with CaO-CuO pellets in a fixed bed reactor[J]. Fuel, 2015, 153: 202-209. doi: 10.1016/j.fuel.2015.02.069
|
[30] |
CHEN J, SHI T, DUAN L, et al. Microemulsion-derived, nanostructured CaO/CuO composites with controllable particle grain size to enhance cyclic CO2 capture performance for combined Ca/Cu looping process[J]. Chemical Engineering Journal, 2020, 393: 124716/1-9.
|
[31] |
ZHAO M, SHI J, ZHONG X, et al. A novel calcium looping absorbent incorporated with polymorphic spacers for hydrogen production and CO2 capture[J]. Energy and Environmental Science, 2014, 7(10): 3291-3295. doi: 10.1039/C4EE01281J
|
[32] |
SARRIÓN B, PEREJÓN A, SÁNCHEZ-JIMÉNEZ P E, et al. Role of calcium looping conditions on the performance of natural and synthetic Ca-based materials for energy storage[J]. Journal of CO2 Utilization, 2018, 28: 374-384. doi: 10.1016/j.jcou.2018.10.018
|
[33] |
ZHANG X, LI Z, PENG Y, et al. Investigation on a novel CaO-Y2O3 sorbent for efficient CO2 mitigation[J]. Chemical Engineering Journal, 2014, 243: 297-304. doi: 10.1016/j.cej.2014.01.017
|
[34] |
WANG S, FAN S, FAN L, et al. Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles[J]. Environmental Science and Technology, 2015, 49(8): 5021-5027. doi: 10.1021/es5052843
|
[35] |
HU Y, LIU W, SUN J, et al. Incorporation of CaO into novel Nd2O3 inert solid support for high temperature CO2 capture[J]. Chemical Engineering Journal, 2015, 273: 333-343. doi: 10.1016/j.cej.2015.03.074
|
[36] |
HU Y, LIU W, SUN J, et al. High temperature CO2 capture on novel Yb2O3-supported CaO-based sorbents[J]. Energy and Fuels, 2016, 30(8): 6606-6613. doi: 10.1021/acs.energyfuels.6b01185
|
[37] |
KOIRALA R, REDDY G K, SMIRNIOTIS P G. Single Nozzle flame-made highly durable metal doped Ca-based sorbents for CO2 capture at high temperature[J]. Energy and Fuels, 2012, 26(5): 3103-3109. doi: 10.1021/ef3004015
|
[38] |
SU C, DUAN L, DONAT F, et al. From waste to high value utilization of spent bleaching clay in synthesizing high-performance calcium-based sorbent for CO2 capture[J]. Applied Energy, 2018, 210: 117-126. https://www.sciencedirect.com/science/article/pii/S0306261917315507
|
[39] |
ERANS M, MANOVIC V, ANTHONY E J. Calcium looping sorbents for CO2 capture[J]. Applied Energy, 2016, 180: 722-742. https://www.sciencedirect.com/science/article/pii/S0306261916310157
|
[40] |
MANOVIC V, ANTHONY E J. Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles[J]. Environmental Science and Technology, 2008, 42(11): 4170-4174.
|
[41] |
ZHANG L, ZHANG B, YANG Z, et al. The role of water on the performance of calcium oxide-based sorbents for carbon dioxide capture: a review[J]. Energy Technology, 2015, 3(1): 10-19.
|