• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
XU Changmeng, SUN Hongran, LI Haichang, HAN Xiaolei, WANG Xiaojun, HE Yan, LIU Zhiming. The Preparation of Bi/Bi2O3 Composite Carbon Nanofiber and Its Lithium Storage Performance[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 34-42. DOI: 10.6054/j.jscnun.2022042
Citation: XU Changmeng, SUN Hongran, LI Haichang, HAN Xiaolei, WANG Xiaojun, HE Yan, LIU Zhiming. The Preparation of Bi/Bi2O3 Composite Carbon Nanofiber and Its Lithium Storage Performance[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 34-42. DOI: 10.6054/j.jscnun.2022042

The Preparation of Bi/Bi2O3 Composite Carbon Nanofiber and Its Lithium Storage Performance

More Information
  • Received Date: January 21, 2021
  • Available Online: July 28, 2022
  • In order to improve the cycling performance of Bi anode materials, a method of synthesizing Bi/Bi2O3 carbon nanocomposite fibers (Bi/Bi2O3(w)-CNFs) was proposed. Bi/Bi2O3(w)-CNFs with longitudinal pore structure were successfully synthesized using Bi2S3 nanorods as templates based on the electrospinning technique and subsequent high-temperature heat treatment. The composites were characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The effects of mass fraction of Bi2S3 on the structure and electrochemical properties of the composites were discussed. The results showed that the synthesized Bi/Bi2O3(8.7%)-CNFs possessed the best lithium storage performance when 8.7%(mass fraction) of Bi2S3 was added. At a current density of 0.1 A/g, the Bi/Bi2O3(8.7%)-CNFs composites could reach 806 mA·h/g in the first cycle and be stably cycled for 1 000 cycles. Even at a high current density of 5.0 A/g, the lithium storage capacity was still 147 mA·h/g. The structure of Bi/Bi2O3(8.7%)-CNFs improved the kinetic performance during charging and discharging, and enhanced the electrochemical performance. The carbon fiber and the internal longitudinal tunnel structure alleviated the volume expansion of the electrode material during the charging and discharging process and enhanced the cycling stability of the battery.
  • [1]
    LI M, LU J, CHEN Z W, AMINE K. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561/1-24.
    [2]
    YI T F, SARI H M K, LI X Z, et al. A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors[J]. Nano Energy, 2021, 85: 105955/1-31.
    [3]
    赖海, 林颖, 陈希, 等. 纳米SnOx的水热合成及其储锂电化学性能[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202102004.htm

    LAI H, LIN Y, CHEN X, et al. Hydrothermal synthesis of nano-SnOx and its electrochemical performance for lithium-ions storage[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202102004.htm
    [4]
    苏炽权, 汝强, 石正禄, 等. 生物炭负载金属硒化物复合材料的储锂性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201905006.htm

    SU C Q, RU Q, SHI Z L, et al. The lithium storage performance of biochar-loaded metal selenide composite material[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201905006.htm
    [5]
    WANG A N, HONG W W, YANG L, et al. Bi-based electrode materials for alkali metal-ion batteries[J]. Small, 2020, 16(48): 2004022/1-23. https://ro.uow.edu.au/theses/4954/
    [6]
    WANG X X, WU Y, HUANG P, et al. A multi-layered composite assembly of Bi nanospheres anchored on nitrogen-doped carbon nanosheets for ultrastable sodium storage[J]. Nanoscale, 2020, 12(46): 23682-23693. doi: 10.1039/D0NR07230C
    [7]
    LAO M M, ZHANG Y, LUO W B, et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Advanced Materials, 2017, 29(48): 1700622/1-23. https://ro.uow.edu.au/aiimpapers/2878/
    [8]
    BAVATHARANI C, MUTHUSANKAR E, WABAIDUR S M, et al. Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: a review[J]. Synthetic Metals, 2020, 271: 116609/1-15.
    [9]
    CHAI W W, YANG F, YIN W H, et al. Bi2S3/C nanorods as efficient anode materials for lithium-ion batteries[J]. Dalton Transactions, 2019, 48(5): 1906-1914. doi: 10.1039/C8DT04158J
    [10]
    JIN Y Q, YUAN H C, LAN J L, et al. Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: the case of 3D freestanding and binder-free bismuth/CNF anodes[J]. Nanoscale, 2017, 9(35): 13298-13304. doi: 10.1039/C7NR04912A
    [11]
    LONG B, QIAO Z P, ZHANG J N, et al. Polypyrrole-encapsulated amorphous Bi2S3 hollow sphere for long life sodium ion batteries and lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019, 7(18): 11370-11378. doi: 10.1039/C9TA01358J
    [12]
    LIU T T, ZHAO Y, GAO L J, et al. Engineering Bi2O3-Bi2S3 heterostructure for superior lithium storage[J]. Scientific Reports, 2015, 5(1): 9307/1-5. https://ui.adsabs.harvard.edu/abs/2015NatSR...5E9307L/abstract
    [13]
    WANG W Q, XIAO Y, LI X W, et al. Bismuth oxide self-standing anodes with concomitant carbon dots welded graphene layer for enhanced performance supercapacitor-battery hybrid devices[J]. Chemical Engineering Journal, 2019, 371: 327-336. doi: 10.1016/j.cej.2019.04.048
    [14]
    WANG Z Y, ZHOU L, LOU X W. Metal oxide hollow nanostructures for lithium-ion batteries[J]. Advanced Materials, 2012, 24(14): 1903-1911. doi: 10.1002/adma.201200469
    [15]
    SUN J J, ZHENG W Z, LYU S L, et al. Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate[J]. Chinese Chemical Letters, 2020, 31(6): 1415-1421. doi: 10.1016/j.cclet.2020.04.031
    [16]
    覃小红, 赵从涛, 杨恩龙, 等. 预氧化工艺对静电纺PAN纳米纤维毡结构和性能的影响[J]. 东华大学学报(自然科学版), 2008, 34(5): 522-527. doi: 10.3969/j.issn.1671-0444.2008.05.002

    QIN X H, ZHAO C T, YANG E L, et al. Effect of the pre-oxidation condition on the structure and property of electrospinning polyacrylonitrile fibers web[J]. Journal of Donghua University (Natural Science), 2008, 34(5): 522-527. doi: 10.3969/j.issn.1671-0444.2008.05.002
    [17]
    刘建华, 张程, 郭胜惠, 等. 聚丙烯腈基碳纤维制备过程中预氧化过程的研究进展[J]. 昆明理工大学学报(自然科学版), 2018, 43(4): 20-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201804004.htm

    LIU J H, ZHANG C, GUO S H, et al. Advance in pre-oxidation process during the preparation of the polyacrylonitrile-based carbon fibers[J]. Journal of Kunming University of Science and Technology (Natural Science), 2018, 43(4): 20-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201804004.htm
    [18]
    何东新, 王成国, 王延相. 聚丙烯腈原丝预氧化过程中的结构与性能变化[J]. 合成纤维工业, 2004(3): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HCXV200403013.htm

    HE D X, WANG C G, WANG Y X. Changes of structure and properties ofpolyacrylonitrile precursors during pre-oxidation[J]. China Synthetic Fiber Industry, 2004(3): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HCXV200403013.htm
    [19]
    DAI R, WANG Y H, DA P M, et al. Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage[J]. Nanoscale, 2014, 6(21): 13236-13241. https://pubs.rsc.org/en/content/articlelanding/2014/nr/c4nr04378b#!
    [20]
    郑秋生. PAN基碳纤维增强复合材料生产工艺及应用[J]. 化纤与纺织技术, 2009(3): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHQ200903009.htm

    ZHENG Q S. Production process and application of PAN-based CFRP[J]. Chemical Fiber and Textile Technology, 2009(3): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHQ200903009.htm
    [21]
    XIANG J, LIU Z M, SONG T. Bi@C nanoplates derived from (BiO)2CO3 as an enhanced electrode material for lithium/sodium-ion batteries[J]. Chemistry Select, 2018, 3(31): 8973-8979.
    [22]
    FANG W, ZHANG N Q, FAN L S, et al. Bi2O3 nanoparticles encapsulated by three-dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries[J]. Journal of Power Sources, 2016, 333: 30-36. https://www.sciencedirect.com/science/article/pii/S0378775316313520
    [23]
    XIONG P X, BAI P X, LI A, et al. Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries[J]. Advanced Materials, 2019, 31(48): 1904771/1-9. https://www.sciencedirect.com/science/article/pii/S221128551400281X
    [24]
    YANG H, XU R, YAO Y, et al. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium-and potassium-ion anodes[J]. Advanced Functional Materials, 2019, 29(13): 1809195/1-11.
  • Cited by

    Periodical cited type(1)

    1. 王晓东,李俊志,窦爽,肖继兵,辛宗绪,吴宏生,朱晓东. 高粱抗旱性研究进展. 山东农业科学. 2024(01): 164-173 .

    Other cited types(3)

Catalog

    Article views (1393) PDF downloads (73) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return