Citation: | XU Changmeng, SUN Hongran, LI Haichang, HAN Xiaolei, WANG Xiaojun, HE Yan, LIU Zhiming. The Preparation of Bi/Bi2O3 Composite Carbon Nanofiber and Its Lithium Storage Performance[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 34-42. DOI: 10.6054/j.jscnun.2022042 |
[1] |
LI M, LU J, CHEN Z W, AMINE K. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561/1-24.
|
[2] |
YI T F, SARI H M K, LI X Z, et al. A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors[J]. Nano Energy, 2021, 85: 105955/1-31.
|
[3] |
赖海, 林颖, 陈希, 等. 纳米SnOx的水热合成及其储锂电化学性能[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202102004.htm
LAI H, LIN Y, CHEN X, et al. Hydrothermal synthesis of nano-SnOx and its electrochemical performance for lithium-ions storage[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202102004.htm
|
[4] |
苏炽权, 汝强, 石正禄, 等. 生物炭负载金属硒化物复合材料的储锂性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201905006.htm
SU C Q, RU Q, SHI Z L, et al. The lithium storage performance of biochar-loaded metal selenide composite material[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201905006.htm
|
[5] |
WANG A N, HONG W W, YANG L, et al. Bi-based electrode materials for alkali metal-ion batteries[J]. Small, 2020, 16(48): 2004022/1-23. https://ro.uow.edu.au/theses/4954/
|
[6] |
WANG X X, WU Y, HUANG P, et al. A multi-layered composite assembly of Bi nanospheres anchored on nitrogen-doped carbon nanosheets for ultrastable sodium storage[J]. Nanoscale, 2020, 12(46): 23682-23693. doi: 10.1039/D0NR07230C
|
[7] |
LAO M M, ZHANG Y, LUO W B, et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Advanced Materials, 2017, 29(48): 1700622/1-23. https://ro.uow.edu.au/aiimpapers/2878/
|
[8] |
BAVATHARANI C, MUTHUSANKAR E, WABAIDUR S M, et al. Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: a review[J]. Synthetic Metals, 2020, 271: 116609/1-15.
|
[9] |
CHAI W W, YANG F, YIN W H, et al. Bi2S3/C nanorods as efficient anode materials for lithium-ion batteries[J]. Dalton Transactions, 2019, 48(5): 1906-1914. doi: 10.1039/C8DT04158J
|
[10] |
JIN Y Q, YUAN H C, LAN J L, et al. Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: the case of 3D freestanding and binder-free bismuth/CNF anodes[J]. Nanoscale, 2017, 9(35): 13298-13304. doi: 10.1039/C7NR04912A
|
[11] |
LONG B, QIAO Z P, ZHANG J N, et al. Polypyrrole-encapsulated amorphous Bi2S3 hollow sphere for long life sodium ion batteries and lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019, 7(18): 11370-11378. doi: 10.1039/C9TA01358J
|
[12] |
LIU T T, ZHAO Y, GAO L J, et al. Engineering Bi2O3-Bi2S3 heterostructure for superior lithium storage[J]. Scientific Reports, 2015, 5(1): 9307/1-5. https://ui.adsabs.harvard.edu/abs/2015NatSR...5E9307L/abstract
|
[13] |
WANG W Q, XIAO Y, LI X W, et al. Bismuth oxide self-standing anodes with concomitant carbon dots welded graphene layer for enhanced performance supercapacitor-battery hybrid devices[J]. Chemical Engineering Journal, 2019, 371: 327-336. doi: 10.1016/j.cej.2019.04.048
|
[14] |
WANG Z Y, ZHOU L, LOU X W. Metal oxide hollow nanostructures for lithium-ion batteries[J]. Advanced Materials, 2012, 24(14): 1903-1911. doi: 10.1002/adma.201200469
|
[15] |
SUN J J, ZHENG W Z, LYU S L, et al. Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate[J]. Chinese Chemical Letters, 2020, 31(6): 1415-1421. doi: 10.1016/j.cclet.2020.04.031
|
[16] |
覃小红, 赵从涛, 杨恩龙, 等. 预氧化工艺对静电纺PAN纳米纤维毡结构和性能的影响[J]. 东华大学学报(自然科学版), 2008, 34(5): 522-527. doi: 10.3969/j.issn.1671-0444.2008.05.002
QIN X H, ZHAO C T, YANG E L, et al. Effect of the pre-oxidation condition on the structure and property of electrospinning polyacrylonitrile fibers web[J]. Journal of Donghua University (Natural Science), 2008, 34(5): 522-527. doi: 10.3969/j.issn.1671-0444.2008.05.002
|
[17] |
刘建华, 张程, 郭胜惠, 等. 聚丙烯腈基碳纤维制备过程中预氧化过程的研究进展[J]. 昆明理工大学学报(自然科学版), 2018, 43(4): 20-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201804004.htm
LIU J H, ZHANG C, GUO S H, et al. Advance in pre-oxidation process during the preparation of the polyacrylonitrile-based carbon fibers[J]. Journal of Kunming University of Science and Technology (Natural Science), 2018, 43(4): 20-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201804004.htm
|
[18] |
何东新, 王成国, 王延相. 聚丙烯腈原丝预氧化过程中的结构与性能变化[J]. 合成纤维工业, 2004(3): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HCXV200403013.htm
HE D X, WANG C G, WANG Y X. Changes of structure and properties ofpolyacrylonitrile precursors during pre-oxidation[J]. China Synthetic Fiber Industry, 2004(3): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HCXV200403013.htm
|
[19] |
DAI R, WANG Y H, DA P M, et al. Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage[J]. Nanoscale, 2014, 6(21): 13236-13241. https://pubs.rsc.org/en/content/articlelanding/2014/nr/c4nr04378b#!
|
[20] |
郑秋生. PAN基碳纤维增强复合材料生产工艺及应用[J]. 化纤与纺织技术, 2009(3): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHQ200903009.htm
ZHENG Q S. Production process and application of PAN-based CFRP[J]. Chemical Fiber and Textile Technology, 2009(3): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHQ200903009.htm
|
[21] |
XIANG J, LIU Z M, SONG T. Bi@C nanoplates derived from (BiO)2CO3 as an enhanced electrode material for lithium/sodium-ion batteries[J]. Chemistry Select, 2018, 3(31): 8973-8979.
|
[22] |
FANG W, ZHANG N Q, FAN L S, et al. Bi2O3 nanoparticles encapsulated by three-dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries[J]. Journal of Power Sources, 2016, 333: 30-36. https://www.sciencedirect.com/science/article/pii/S0378775316313520
|
[23] |
XIONG P X, BAI P X, LI A, et al. Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries[J]. Advanced Materials, 2019, 31(48): 1904771/1-9. https://www.sciencedirect.com/science/article/pii/S221128551400281X
|
[24] |
YANG H, XU R, YAO Y, et al. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium-and potassium-ion anodes[J]. Advanced Functional Materials, 2019, 29(13): 1809195/1-11.
|
1. |
王晓东,李俊志,窦爽,肖继兵,辛宗绪,吴宏生,朱晓东. 高粱抗旱性研究进展. 山东农业科学. 2024(01): 164-173 .
![]() |