Citation: | LIU Yufei, YANG Yurong, SUN Zhengxin, LIU Chang, QIU Min, GAO Fan. The Synthesis of Oxygen Vacancy-mediated BiVO4 Nanosheets and Their Performance in Photocatalytic Water Splitting O2 Evolution[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 22-27. DOI: 10.6054/j.jscnun.2022039 |
[1] |
江丰, 李林涛, 冯旷, 等. 化合物半导体Cu2ZnSnS4太阳电池与人工光合作用制氢[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202006001.htm
JIANG F, LI L T, FENG K, et al. Cell and artificial photosynthesis for hydrogen production[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202006001.htm
|
[2] |
ZHOU X M, LIU N, SCHMIDT J, et al. Noble-metal-free photocatalytic hydrogen evolution activity: the impact of ball milling anatase nanopowders with TiH2[J]. Advanced Materials, 2017, 29(5): 1604747/1-7.
|
[3] |
王熙, 董海太, 石思琦, 等. Cu2O/(rGO-TiO2)复合薄膜的制备及其光催化产氢性能[J]. 华南师范大学学报(自然科学版), 2018, 50(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201804008.htm
WANG X, DONG H T, SHI S Q, et al. Fabrication of a Cu2O/(rGO- TiO2) composite film for efficient photoca-talytic hydrogen production[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201804008.htm
|
[4] |
ZENG C, HU Y, ZHANG T, et al. Core-satellite structured Z-scheme catalyst Cd0.5Zn0.5S/BiVO4 for highly efficiency and stable photocatalytic water splitting[J]. Journal of Materials Chemistry A, 2018, 6: 16932-16942. doi: 10.1039/C8TA04258F
|
[5] |
张辉, 宋海燕, 阮舒红, 等. MoS2@ZnO异质结纳米材料的制备及光催化性能[J]. 华南师范大学学报(自然科学版), 2019, 51(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201901007.htm
ZHANG H, SONG H, RUAN S, et al. The preparation and photocatalytic properties of MoS2@ZnO heterojunction nanomaterials[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201901007.htm
|
[6] |
HUANG W, HE Q, HU Y P, et al. Molecular heterostructures of covalent triazine frameworks for enhanced photocatalytic hydrogen production[J]. Angewandte Chemie International Edition, 2019, 58(26): 8676-8680. doi: 10.1002/anie.201900046
|
[7] |
LI L D, YAN J Q, WANG T, et al. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production[J]. Nature Communication, 2015, 6: 5881-5891. doi: 10.1038/ncomms6881
|
[8] |
WEI T C, ZHU Y N, AN X Q, et al. Defect modulation of z-scheme TiO2/Cu2O photocatalysts for durable Water splitting[J]. ACS Catalyst, 2019, 9(9): 8346-8354. doi: 10.1021/acscatal.9b01786
|
[9] |
PEI D N, GONG L, ZHANG A Y, et al. Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction[J]. Nature Communication, 2015, 6: 8696/1-10.
|
[10] |
ZHANG N, LI X Y, YE H C, et al. Oxide defect engineering enables to couple solar energy into oxygen activation[J]. Journal of American Chemical Society, 2016, 138(28): 8928-8935. doi: 10.1021/jacs.6b04629
|
[11] |
LIU D N, CHEN D Y, LI N J, et al. Surface engineering of g-C3N4 by stacked oxygen vacancies-rich BiOBr sheets for boosting photocatalytic performance[J]. Angewandte Chemie International Edition, 2020, 132(11): 4549-4554.
|
[12] |
LI C Q, YI S S, CHEN D L, et al. Oxygen vacancy engineered SrTiO3 nanofibers for enhanced photocatalytic H2 production[J]. Journal of Materials Chemistry A, 2019, 7(30): 17974-17980. doi: 10.1039/C9TA03701B
|
[13] |
ONDA K, LI B, PETEK H, et al. Two-photon photoemission spectroscopy of TiO2(110) surfaces modified by defects and O2 or H2O adsorbates[J]. Physical Review B, 2004, 70: 045415/1-11.
|
[14] |
KNOTEK M L, FEIBELMAN P J. Ion desorption by core-hole auger decay[J]. Physical Review Letters, 1978, 40: 964-967. doi: 10.1103/PhysRevLett.40.964
|
[15] |
THOMPSON T, YATES J. TiO2-based photocatalysis: surface defects, oxygen and charge transfer[J]. Topics in Catalysis, 2005, 35: 197-210. doi: 10.1007/s11244-005-3825-1
|
[16] |
ZHOU P, YU J G, JARONIEC M. all-solid-state z-scheme photocatalytic systems[J]. Advanced Materials, 2014, 26(29): 4920-4935. doi: 10.1002/adma.201400288
|
[17] |
HU Z, YUAN L, LIU Z, et al. A highly efficient photocatalyst hydrogenated black TiO2 for the photocatalytic splitting of water[J]. Angewandte Chemie International Edition, 2016, 55: 9579/1-3.
|
[18] |
TAN H Q, ZHAO Z, NIU M, et al. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity[J]. Nanoscale, 2014, 6: 10216-10223. doi: 10.1039/C4NR02677B
|
[19] |
WANG J, SHI W, LIU D, et al. Supra molecular organic nanofibers with highly efficient and stable visible light photooxidation performance[J]. Applied Catalysis B: Environmental, 2017, 202: 289-297. doi: 10.1016/j.apcatb.2016.09.037
|
[20] |
SUN Z, YU Z, LIU Y, et al. Construction of 2D/2D BiVO4/g-C3N4 nanosheet hetero structures with improved photocatalytic activity[J]. Journal of Colloid and Interface Science, 2019, 533: 251-258. doi: 10.1016/j.jcis.2018.08.071
|
[21] |
LIU C, FU Y, ZHAO J, et al. All-solid-state z-scheme system of NiO/CDs/BiVO4 for visible light-driven efficient overall water splitting[J]. Chemical Engineering Journal, 2019, 358: 134-142. doi: 10.1016/j.cej.2018.10.005
|
[22] |
DU X, ZHAO T, XIU Z. BiVO4@ZnIn2S4/Ti3C2 MXene quantum dots assembly all-solid-state direct z-scheme photocatalysts for efficient visible-light-driven overall water splitting[J]. Applied Materials Today, 2020, 20: 100719/1-11.
|
[23] |
JIAO Z, YU H, WANG X, et al. Ultrathin BiVO4 nanobelts: controllable synthesis and improved photocatalytic oxidation of water[J]. RSC Advances, 2016, 6: 73136-73139. doi: 10.1039/C6RA15566A
|