• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LIU Yufei, YANG Yurong, SUN Zhengxin, LIU Chang, QIU Min, GAO Fan. The Synthesis of Oxygen Vacancy-mediated BiVO4 Nanosheets and Their Performance in Photocatalytic Water Splitting O2 Evolution[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 22-27. DOI: 10.6054/j.jscnun.2022039
Citation: LIU Yufei, YANG Yurong, SUN Zhengxin, LIU Chang, QIU Min, GAO Fan. The Synthesis of Oxygen Vacancy-mediated BiVO4 Nanosheets and Their Performance in Photocatalytic Water Splitting O2 Evolution[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 22-27. DOI: 10.6054/j.jscnun.2022039

The Synthesis of Oxygen Vacancy-mediated BiVO4 Nanosheets and Their Performance in Photocatalytic Water Splitting O2 Evolution

More Information
  • Received Date: August 03, 2021
  • Available Online: July 28, 2022
  • Oxygen vacancy-mediated BiVO4 nanosheets were synthesized with the hydrothermal and sintering methods. The structure and hydrogen production properties of BiVO4 nanosheets with different oxygen vacancy (OV) contents were studied with X-ray diffractometer(XRD), electron spin resonance spectroscopy, high resolution transmission electron microscope, UV-Vis spectrophotometer, fluorescence spectrometer and the photocatalytic O2 evolution system. Through the regulation of Ov content, the optical absorption and optoelectronic properties of BiVO4 nanosheets were optimized, and the photocatalytic O2 production efficiency was greatly improved. The results showed that the optical absorption of BiVO4 nanosheets in the visible region was significantly enhanced after OV introduction, and the absorption edge of the sample is obviously red-shifted with the increase of OV content. The introduction of an appropriate OV amount could significantly improve the separation of photogenerated electrons and holes, thus improving the utilization rate of photogenerated electrons. The photocatalytic O2 production rate of BiVO4-OV2 nanosheets was about 433 μmol/(h·g), which was about 10 times higher than that of BiVO4.
  • [1]
    江丰, 李林涛, 冯旷, 等. 化合物半导体Cu2ZnSnS4太阳电池与人工光合作用制氢[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202006001.htm

    JIANG F, LI L T, FENG K, et al. Cell and artificial photosynthesis for hydrogen production[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202006001.htm
    [2]
    ZHOU X M, LIU N, SCHMIDT J, et al. Noble-metal-free photocatalytic hydrogen evolution activity: the impact of ball milling anatase nanopowders with TiH2[J]. Advanced Materials, 2017, 29(5): 1604747/1-7.
    [3]
    王熙, 董海太, 石思琦, 等. Cu2O/(rGO-TiO2)复合薄膜的制备及其光催化产氢性能[J]. 华南师范大学学报(自然科学版), 2018, 50(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201804008.htm

    WANG X, DONG H T, SHI S Q, et al. Fabrication of a Cu2O/(rGO- TiO2) composite film for efficient photoca-talytic hydrogen production[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201804008.htm
    [4]
    ZENG C, HU Y, ZHANG T, et al. Core-satellite structured Z-scheme catalyst Cd0.5Zn0.5S/BiVO4 for highly efficiency and stable photocatalytic water splitting[J]. Journal of Materials Chemistry A, 2018, 6: 16932-16942. doi: 10.1039/C8TA04258F
    [5]
    张辉, 宋海燕, 阮舒红, 等. MoS2@ZnO异质结纳米材料的制备及光催化性能[J]. 华南师范大学学报(自然科学版), 2019, 51(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201901007.htm

    ZHANG H, SONG H, RUAN S, et al. The preparation and photocatalytic properties of MoS2@ZnO heterojunction nanomaterials[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201901007.htm
    [6]
    HUANG W, HE Q, HU Y P, et al. Molecular heterostructures of covalent triazine frameworks for enhanced photocatalytic hydrogen production[J]. Angewandte Chemie International Edition, 2019, 58(26): 8676-8680. doi: 10.1002/anie.201900046
    [7]
    LI L D, YAN J Q, WANG T, et al. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production[J]. Nature Communication, 2015, 6: 5881-5891. doi: 10.1038/ncomms6881
    [8]
    WEI T C, ZHU Y N, AN X Q, et al. Defect modulation of z-scheme TiO2/Cu2O photocatalysts for durable Water splitting[J]. ACS Catalyst, 2019, 9(9): 8346-8354. doi: 10.1021/acscatal.9b01786
    [9]
    PEI D N, GONG L, ZHANG A Y, et al. Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction[J]. Nature Communication, 2015, 6: 8696/1-10.
    [10]
    ZHANG N, LI X Y, YE H C, et al. Oxide defect engineering enables to couple solar energy into oxygen activation[J]. Journal of American Chemical Society, 2016, 138(28): 8928-8935. doi: 10.1021/jacs.6b04629
    [11]
    LIU D N, CHEN D Y, LI N J, et al. Surface engineering of g-C3N4 by stacked oxygen vacancies-rich BiOBr sheets for boosting photocatalytic performance[J]. Angewandte Chemie International Edition, 2020, 132(11): 4549-4554.
    [12]
    LI C Q, YI S S, CHEN D L, et al. Oxygen vacancy engineered SrTiO3 nanofibers for enhanced photocatalytic H2 production[J]. Journal of Materials Chemistry A, 2019, 7(30): 17974-17980. doi: 10.1039/C9TA03701B
    [13]
    ONDA K, LI B, PETEK H, et al. Two-photon photoemission spectroscopy of TiO2(110) surfaces modified by defects and O2 or H2O adsorbates[J]. Physical Review B, 2004, 70: 045415/1-11.
    [14]
    KNOTEK M L, FEIBELMAN P J. Ion desorption by core-hole auger decay[J]. Physical Review Letters, 1978, 40: 964-967. doi: 10.1103/PhysRevLett.40.964
    [15]
    THOMPSON T, YATES J. TiO2-based photocatalysis: surface defects, oxygen and charge transfer[J]. Topics in Catalysis, 2005, 35: 197-210. doi: 10.1007/s11244-005-3825-1
    [16]
    ZHOU P, YU J G, JARONIEC M. all-solid-state z-scheme photocatalytic systems[J]. Advanced Materials, 2014, 26(29): 4920-4935. doi: 10.1002/adma.201400288
    [17]
    HU Z, YUAN L, LIU Z, et al. A highly efficient photocatalyst hydrogenated black TiO2 for the photocatalytic splitting of water[J]. Angewandte Chemie International Edition, 2016, 55: 9579/1-3.
    [18]
    TAN H Q, ZHAO Z, NIU M, et al. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity[J]. Nanoscale, 2014, 6: 10216-10223. doi: 10.1039/C4NR02677B
    [19]
    WANG J, SHI W, LIU D, et al. Supra molecular organic nanofibers with highly efficient and stable visible light photooxidation performance[J]. Applied Catalysis B: Environmental, 2017, 202: 289-297. doi: 10.1016/j.apcatb.2016.09.037
    [20]
    SUN Z, YU Z, LIU Y, et al. Construction of 2D/2D BiVO4/g-C3N4 nanosheet hetero structures with improved photocatalytic activity[J]. Journal of Colloid and Interface Science, 2019, 533: 251-258. doi: 10.1016/j.jcis.2018.08.071
    [21]
    LIU C, FU Y, ZHAO J, et al. All-solid-state z-scheme system of NiO/CDs/BiVO4 for visible light-driven efficient overall water splitting[J]. Chemical Engineering Journal, 2019, 358: 134-142. doi: 10.1016/j.cej.2018.10.005
    [22]
    DU X, ZHAO T, XIU Z. BiVO4@ZnIn2S4/Ti3C2 MXene quantum dots assembly all-solid-state direct z-scheme photocatalysts for efficient visible-light-driven overall water splitting[J]. Applied Materials Today, 2020, 20: 100719/1-11.
    [23]
    JIAO Z, YU H, WANG X, et al. Ultrathin BiVO4 nanobelts: controllable synthesis and improved photocatalytic oxidation of water[J]. RSC Advances, 2016, 6: 73136-73139. doi: 10.1039/C6RA15566A
  • Cited by

    Periodical cited type(6)

    1. 方艳林,王升帅,张伟,张妮,谢璇,张厚勇. 基于PEMS的非四机械尾气碳排放特征探析. 环境监控与预警. 2025(01): 98-102 .
    2. 吴雨涟,杨洁,邵智娟,沈春其,裴程伟,秦龙飞,郑嘉兴,徐婷婷,阚诗烨,宋程璐,崔璀. 苏州市机动车排放清单及特征研究. 环境科学学报. 2024(09): 129-139 .
    3. 陈佳昊,项雅静. 基于拥堵系数的上海市道路高分辨率碳排放时空分配方法研究. 环境科学与管理. 2024(11): 16-21 .
    4. 石文哲,王峰,付合英,李忠飞,王亮,于海洋,唐忠锋. 基于全生命周期法的矿用柴油重卡碳核算. 环境工程学报. 2023(06): 1907-1914 .
    5. 菅月诚,彭娜娜,高艳珊,王强. “双碳”背景下细颗粒物和臭氧污染研究进展. 能源环境保护. 2023(05): 190-200 .
    6. 代洪娜,曾煜磊,施庆利,孙婷. 碳达峰与碳中和背景下省域高速公路网碳排放精细化测算方法. 华南师范大学学报(自然科学版). 2023(04): 1-13 .

    Other cited types(6)

Catalog

    Article views (264) PDF downloads (54) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return