Citation: | WANG Xi, CAI Yixuan, XIAO Zijun, HE Chun, LI Laisheng. The Preparation of Cu2O-TiO2 Composite Films and Their Properties of Photocatalytic and Hydrogen Production[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 8-14. DOI: 10.6054/j.jscnun.2022037 |
[1] |
郭烈锦, 刘涛, 纪军, 等. 利用太阳能规模制氢[J]. 科技导报, 2005, 23(2): 29-33. doi: 10.3321/j.issn:1000-7857.2005.02.008
GUO L J, LIU T, JI J, et al. Scale hydrogen production from solar energy[J]. Science and Technology Review, 2005, 23(2): 29-33. doi: 10.3321/j.issn:1000-7857.2005.02.008
|
[2] |
NIU J H. Research on the hydrogen production technology[C]//Proceedings of 2021 11th International Conference on Renewable and Clean Energy. IOP Conference Series: Earth and Environmental Science, 2021, 813: 012004/1-6.
|
[3] |
曹军文, 张文强, 李一枫, 等. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ202112005.htm
CAO J W, ZHANG W Q, LI Y F, et al. Current status of hydrogen production in China[J]. Progress in Chemistry, 2021, 33(12): 2215-2244. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ202112005.htm
|
[4] |
朱维群, 齐情情, 王倩, 等. 化石燃料环境友好工业路线开发[J]. 山东大学学报(理学版), 2017, 52(5): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201705004.htm
ZHU W Q, QI Q Q, WANG Q, et al. The development of fossil fuel environment-friendly industrial route[J]. Journal of Shandong University(Natural Science), 2017, 52(5): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201705004.htm
|
[5] |
李亮荣, 李秋平, 艾盛, 等. 传统化石与新型生物质能源重整制氢研究现状[J]. 化学与生物工程, 2021, 38(11): 1-6. doi: 10.3969/j.issn.1672-5425.2021.11.001
LI L R, LI Q P, AI S, et al. Research status of hydrogen production from reforming of fossil energy and new biomass energy[J]. Chemistry and Bioengineering, 2021, 38(11): 1-6. doi: 10.3969/j.issn.1672-5425.2021.11.001
|
[6] |
朱俏俏, 程纪华. 氢能制备技术研究进展[J]. 石油石化节能, 2015, 5(12): 51-54. doi: 10.3969/j.issn.2095-1493.2015.12.018
|
[7] |
JI M D, WANG J L. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators[J]. International Journal of Hydrogen Energy, 2021, 46(78): 38612-38635. doi: 10.1016/j.ijhydene.2021.09.142
|
[8] |
王泽. 太阳能作为新能源的应用前景[J]. 皮革制作与环保科技, 2021, 2(20): 30-31. https://www.cnki.com.cn/Article/CJFDTOTAL-PGZZ202120016.htm
WANG Z. The application prospect of solar energy as new energy[J]. Leather Manufacture and Environmental Technology, 2021, 2(20): 30-31. https://www.cnki.com.cn/Article/CJFDTOTAL-PGZZ202120016.htm
|
[9] |
王熙, 董海太, 石思琦, 等. Cu2O/(rGO-TiO2)复合薄膜的制备及其光催化产氢性能[J]. 华南师范大学学报(自然科学版), 2018, 50(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201804008.htm
WANG X, DONG H T, SHI S Q, et al. Fabrication of a Cu2O/(rGO-TiO2) Composite film for efficient photoca-talytic hydrogen production[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201804008.htm
|
[10] |
廖添, 宋亭, 杨定乔, 等. Fe、Cr共掺杂TiO2纳米球增强光催化制氢[J]. 华南师范大学学报(自然科学版), 2017, 49(5): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201705006.htm
LIAO T, SONG T, YANG D Q, et al. Fe, Cr codoped TiO2 nanosphere with enhanced photocatalytic hydrogen evolution[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(5): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201705006.htm
|
[11] |
王熙, 董海太, 齐中, 等. 复合光催化膜MoS2/Ag/TiO2同步降解有机物及产氢的研究[J]. 华南师范大学学报(自然科学版), 2017, 49(4): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201704010.htm
WANG X, DONG H T, QI Z, et al. Simultaneously hydrogen production and organic degradation by composite MoS2/Ag/TiO2 film[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(4): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201704010.htm
|
[12] |
马宇翔, 马艺文, 徐东, 等. 铜及铜基化合物改性TiO2在光催化产氢领域中的研究进展[J]. 功能材料与器件学报, 2021, 27(5): 431-444. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCQ202105008.htm
MA Y X, MA Y W, XU D, et al. Research progress of copper and copper-based nanoparticles modified TiO2 in photocatalytic hydrogen production[J]. Journal of Functional Materials and Devices, 2021, 27(5): 431-444. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCQ202105008.htm
|
[13] |
刘颖, 徐贺龙, 王雪芹. TiO2光催化剂的制备及应用研究进展[J]. 当代化工, 2021, 50(9): 2217-2220. doi: 10.3969/j.issn.1671-0460.2021.09.044
LIU Y, XU H L, WANG X Q. Research progress in preparation and application of TiO2 Photocatalyst[J]. Contemporary Chemical Industry, 2021, 50(9): 2217-2220. doi: 10.3969/j.issn.1671-0460.2021.09.044
|
[14] |
PARACCHINO A, LAPORTE V, SIVULA K. Highly active oxide photocathode for photoelectrochemical water reduction[J]. Nature Materials, 2011, 10(6): 456-461. doi: 10.1038/nmat3017
|
[15] |
姜鉴哲, 任铁真. Cu2O-TiO2异质结光催化剂的研究进展[J]. 化学研究与应用, 2021, 33(12): 2292-2300. doi: 10.3969/j.issn.1004-1656.2021.12.002
JIANG J Z, REN T Z. Research progress of Cu2O-TiO2 heterojunction photocatalyst[J]. Chemical Research and Application, 2021, 33(12): 2292-2300. doi: 10.3969/j.issn.1004-1656.2021.12.002
|
[16] |
WANG X, DONG H, ZHE H, et al. Fabrication of a Cu2O/Au/TiO2 composite film for efficient photocatalytic hydrogen production from aqueous solution of methanol and glucose[J]. Materials Science and Engineering B, 2017, 219: 10-19. doi: 10.1016/j.mseb.2017.02.011
|
[17] |
MONTALTI M, MUROV S L. Handbook of photochemistry[M]. Boca Raton: CRC Press, 2006: 650.
|
[18] |
CHENG W Y, YU T H, CHAO K J, et al. Cu2O-decorated mesoporous TiO2 beads as a highly efficient photocatalyst for hydrogen production[J]. ChemCatChem, 2014, 6(1): 293-300. doi: 10.1002/cctc.201300681
|