Citation: | LU Xueyi, WANG Ziling, CAI Mohang, LU Xia. The Design of High-performance Ruthenium Oxide Catalyst for Electrocatalytic Oxygen Evolution Reaction[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 1-7. DOI: 10.6054/j.jscnun.2022036 |
[1] |
YU D, MA Y, HU F, et al. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries[J]. Advanced Energy Materials, 2021, 11(30): 2101242/1-20.
|
[2] |
LU X, YANG Y, YIN Y, et al. Atomic heterointerface boosts the catalytic activity toward oxygen reduction/evolution reaction[J]. Advanced Energy Materials, 2021, 11(45): 2102235/1-10.
|
[3] |
SUN W, WANG F, ZHANG B, et al. A rechargeable zinc-air battery based on zinc peroxide chemistry[J]. Science, 2021, 371: 46-51. doi: 10.1126/science.abb9554
|
[4] |
ZHU T, LIU S, HUANG B, et al. High-performance diluted nickel nanoclusters decorating ruthenium nanowires for pH-universal overall water splitting[J]. Energy & Environmental Science, 2021, 14(5): 3194-3202.
|
[5] |
WANG J, KIM S J, LIU J, et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation[J]. Nature Catalysis, 2021, 4(3): 212-222. doi: 10.1038/s41929-021-00578-1
|
[6] |
LI R, WANG H, HU F, et al. IrW nanochannel support enabling ultrastable electrocatalytic oxygen evolution at 2 A cm-2 in acidic media[J]. Nature Communications, 2021, 12(1): 3540/1-10.
|
[7] |
GAO J, TAO H, LIU B. Progress of nonprecious-metal-based electrocatalysts for oxygen evolution in acidic media[J]. Advanced Materials, 2021, 33(31): 2003786/1-18.
|
[8] |
SONG J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews, 2020, 49(7): 2196-2214. doi: 10.1039/C9CS00607A
|
[9] |
ZHANG N, CHAI Y. Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation[J]. Energy and Environmental Science, 2021, 14(9): 4647-4671. doi: 10.1039/D1EE01277K
|
[10] |
LIU X, ZHANG G, WANG L, et al. Structural design strategy and active site regulation of high-efficient bifunctional oxygen reaction electrocatalysts for Zn-air battery[J]. Small, 2021, 17(48): 2006766/1-19.
|
[11] |
ZHANG L, JANG H, LIU H, et al. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: a robust pH-universal oxygen evolution electrocatalyst[J]. Angewandte Chemie International Edition, 2021, 60(34): 18821-18829. doi: 10.1002/anie.202106631
|
[12] |
WANG Z, ZHENG Z, XUE Y, et al. Acidic water oxidation on quantum dots of IrOx/graphdiyne[J]. Advanced Energy Materials, 2021, 11(32): 2101138/1-10.
|
[13] |
WANG J, ZHANG M, YANG G, et al. Heterogeneous bimetallic Mo-NiPx/NiSy as a highly efficient electrocatalyst for robust overall water splitting[J]. Advanced Functional Materials, 2021, 31(33): 2101532/1-8.
|
[14] |
LU X, XUE H, GONG H, et al. 2D layered double hydro-xide nanosheets and their derivatives toward efficient oxygen evolution reaction[J]. Nano-Micro Letters, 2020, 12(1): 86/1-32.
|
[15] |
HE Y, JIA L, LU X, et al. Molecular-scale manipulation of layer sequence in heteroassembled nanosheet films toward oxygen evolution electrocatalysts[J]. ACS Nano, 2022, 16(3): 4028-4040. doi: 10.1021/acsnano.1c09615
|
[16] |
CHEN D, CHEN C, ZHANG Z, et al. Compositional engineering of perovskite oxides for highly efficient oxygen reduction reactions[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8562-8571.
|
[17] |
GRIMAUD A, MAY K J, CARLTON C E, et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution[J]. Nature Communications, 2013, 4: 2439/1-7.
|
[18] |
NANDHA N K, SINGH P S, SRIVASTAVA D N. Improved oer performance on the carbon composite electrode through tailored wettability[J]. ACS Applied Energy Materials, 2021, 4(9): 9618-9626. doi: 10.1021/acsaem.1c01692
|
[19] |
LAHA S, LEE Y, PODJASKI F, et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium[J]. Advanced Energy Materials, 2019, 9(15): 1803795/1-8.
|
[20] |
GE R, LI L, SU J, et al. Ultrafine defective RuO2 electrocatalyst integrated on carbon cloth for robust water oxidation in acidic media[J]. Advanced Energy Materials, 2019, 9(35): 1901313/1-9.
|
[21] |
DANG Y, WU T, TAN H, et al. Partially reduced Ru/RuO2 composites as efficient and pH-universal electrocatalysts for hydrogen evolution[J]. Energy & Environmental Science, 2021, 14(10): 5433-5443.
|
[22] |
LU X, HAO G P, SUN X, et al. Highly dispersed metal and oxide nanoparticles on ultra-polar carbon as efficient cathode materials for Li-O2 batteries[J]. Journal of Materials Chemistry A, 2017, 5(13): 6284-6291. doi: 10.1039/C7TA00777A
|
[23] |
KÖTZ R, STUCKI S, SCHERSON D, et al. In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 172(1): 211-219.
|
[24] |
WU D, KUSADA K, YOSHIOKA S, et al. Efficient overall water splitting in acid with anisotropic metal nanosheets[J]. Nature Communications, 2021, 12(1): 1145/1-9.
|
[25] |
WANG J, CHENG C, YUAN Q, et al. Exceptionally active and stable RuO2 with interstitial carbon for water oxidation in acid[J/OL]. Chem, 2022, 49. https://doi.org/10.1016/j.chempr.2022.02.003.
|
[26] |
张璋, 胡先标. 镍铁钴磷化物纳米片阵列的制备及其电催化析氧性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201905004.htm
ZHANG Z, HU X B. Fabrication of Ni-Fe-Co phosphide nanosheets array and its electrocatalytic oxygen evolution performance[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201905004.htm
|
[27] |
HODNIK N, JOVANOVIČ P, PAVLIŠIČ A, et al. New insights into corrosion of ruthenium and ruthenium oxide nanoparticles in acidic media[J]. The Journal of Physical Chemistry C, 2015, 119(18): 10140-10147. doi: 10.1021/acs.jpcc.5b01832
|
[28] |
JIN H, CHOI S, BANG G J, et al. Safeguarding the RuO2 phase against lattice oxygen oxidation during acidic water electrooxidation[J]. Energy & Environmental Science, 2021, 15(3): 1119-1130.
|
[29] |
MAO J, HE C T, PEI J, et al. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice[J]. Nature Communications, 2018, 9(1): 4958/1-8.
|
[30] |
LU X, SAKAI N, TANG D, et al. CoNiFe layered double hydroxide/RuO2.1 nanosheet superlattice as carbon-free electrocatalysts for water splitting and Li-O2 batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 33083-33093.
|
[31] |
JAHAN M, LIU Z, LOH K P. A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR[J]. Advanced Functional Materials, 2013, 23(43): 5363-5372. doi: 10.1002/adfm.201300510
|
[32] |
WANG T, WANG P, ZANG W, et al. Nanoframes of Co3O4 Mo2N heterointerfaces enable high-performance bifunctionality toward both electrocatalytic HER and OER [J]. Advanced Functional Materials, 2021, 32(7): 2107382/1-9.
|
[33] |
LAURITA G, GRAJCZYK R, STOLT M, et al. Influence of structural disorder on hollandites AxRu4O8(A+=K, Rb, Rb1-xNax)[J]. Inorganic Chemistry, 2016, 55(7): 3462-3467. doi: 10.1021/acs.inorgchem.5b02897
|
[34] |
FOO M L, LEE W L, SIEGRIST T, et al. Electronic characterization of alkali ruthenium hollandites: KRu4O8, RbRu4O8 and Cs0.8Li0.2Ru4O8[J]. Materials Research Bulletin, 2004, 39(11): 1663-1670. doi: 10.1016/j.materresbull.2004.05.019
|
[35] |
YIN H, CHEN Z, PENG Y, et al. Dual active centers bridged by oxygen vacancies of ruthenium single-atom hybrids supported on molybdenum oxide for photocatalytic ammonia synthesis[J]. Angewandte Chemie International Edition, 2022, 61(14): e202114242/1-11.
|
[36] |
FOLKESSON B. ECSA studies on the charge distribution in some dinitrogen complexes of rhenium, iridium, ruthenium, and osmium[J]. Acta Chemica Scandinavica, 1973, 27: 287-302. doi: 10.3891/acta.chem.scand.27-0287
|
[37] |
GRAHAME D C. The electrical double layer and the theory of electrocapillarity[J]. Chemical Reviews, 1947, 41(3): 441-501. doi: 10.1021/cr60130a002
|
[38] |
CONWAY B E, TILAK B V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H[J]. Electrochimica Acta, 2002, 47(22): 3571-3594.
|
[39] |
KÖTZ R, CARLEN M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15): 2483-2498.
|