• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LU Xueyi, WANG Ziling, CAI Mohang, LU Xia. The Design of High-performance Ruthenium Oxide Catalyst for Electrocatalytic Oxygen Evolution Reaction[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 1-7. DOI: 10.6054/j.jscnun.2022036
Citation: LU Xueyi, WANG Ziling, CAI Mohang, LU Xia. The Design of High-performance Ruthenium Oxide Catalyst for Electrocatalytic Oxygen Evolution Reaction[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 1-7. DOI: 10.6054/j.jscnun.2022036

The Design of High-performance Ruthenium Oxide Catalyst for Electrocatalytic Oxygen Evolution Reaction

More Information
  • Received Date: March 27, 2022
  • Available Online: July 28, 2022
  • One kind of HRu4O8 microrods were fabricated with solid-state calcination and the proton exchange method. The morphology and crystal structure of HRu4O8 microrods were characterized with X-ray diffraction, transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and so on. The catalytic activity of HRu4O8 was evaluated with the linear scanning voltammetry, cyclic voltammetry, Tafel plot, chronopotentiometry and other electrochemical methods. The results showed that the preparation of HRu4O8 with the RuO2 nanoparticle precursor resulted in a significant increase of the electrochemical active surface area. HRu4O8 exhibited excellent electrocatalytic activity towards OER with an overpotential of only 208 mV at 10 mA/cm2, lower than that of RuO2 nanoparticles(276 mV). Moreover, HRu4O8 also presented outstanding stability for 10 h without apparent degradation. Such work sheds light on new perspectives for designing highly active electrocatalyst of water splitting.
  • [1]
    YU D, MA Y, HU F, et al. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries[J]. Advanced Energy Materials, 2021, 11(30): 2101242/1-20.
    [2]
    LU X, YANG Y, YIN Y, et al. Atomic heterointerface boosts the catalytic activity toward oxygen reduction/evolution reaction[J]. Advanced Energy Materials, 2021, 11(45): 2102235/1-10.
    [3]
    SUN W, WANG F, ZHANG B, et al. A rechargeable zinc-air battery based on zinc peroxide chemistry[J]. Science, 2021, 371: 46-51. doi: 10.1126/science.abb9554
    [4]
    ZHU T, LIU S, HUANG B, et al. High-performance diluted nickel nanoclusters decorating ruthenium nanowires for pH-universal overall water splitting[J]. Energy & Environmental Science, 2021, 14(5): 3194-3202.
    [5]
    WANG J, KIM S J, LIU J, et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation[J]. Nature Catalysis, 2021, 4(3): 212-222. doi: 10.1038/s41929-021-00578-1
    [6]
    LI R, WANG H, HU F, et al. IrW nanochannel support enabling ultrastable electrocatalytic oxygen evolution at 2 A cm-2 in acidic media[J]. Nature Communications, 2021, 12(1): 3540/1-10.
    [7]
    GAO J, TAO H, LIU B. Progress of nonprecious-metal-based electrocatalysts for oxygen evolution in acidic media[J]. Advanced Materials, 2021, 33(31): 2003786/1-18.
    [8]
    SONG J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews, 2020, 49(7): 2196-2214. doi: 10.1039/C9CS00607A
    [9]
    ZHANG N, CHAI Y. Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation[J]. Energy and Environmental Science, 2021, 14(9): 4647-4671. doi: 10.1039/D1EE01277K
    [10]
    LIU X, ZHANG G, WANG L, et al. Structural design strategy and active site regulation of high-efficient bifunctional oxygen reaction electrocatalysts for Zn-air battery[J]. Small, 2021, 17(48): 2006766/1-19.
    [11]
    ZHANG L, JANG H, LIU H, et al. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: a robust pH-universal oxygen evolution electrocatalyst[J]. Angewandte Chemie International Edition, 2021, 60(34): 18821-18829. doi: 10.1002/anie.202106631
    [12]
    WANG Z, ZHENG Z, XUE Y, et al. Acidic water oxidation on quantum dots of IrOx/graphdiyne[J]. Advanced Energy Materials, 2021, 11(32): 2101138/1-10.
    [13]
    WANG J, ZHANG M, YANG G, et al. Heterogeneous bimetallic Mo-NiPx/NiSy as a highly efficient electrocatalyst for robust overall water splitting[J]. Advanced Functional Materials, 2021, 31(33): 2101532/1-8.
    [14]
    LU X, XUE H, GONG H, et al. 2D layered double hydro-xide nanosheets and their derivatives toward efficient oxygen evolution reaction[J]. Nano-Micro Letters, 2020, 12(1): 86/1-32.
    [15]
    HE Y, JIA L, LU X, et al. Molecular-scale manipulation of layer sequence in heteroassembled nanosheet films toward oxygen evolution electrocatalysts[J]. ACS Nano, 2022, 16(3): 4028-4040. doi: 10.1021/acsnano.1c09615
    [16]
    CHEN D, CHEN C, ZHANG Z, et al. Compositional engineering of perovskite oxides for highly efficient oxygen reduction reactions[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8562-8571.
    [17]
    GRIMAUD A, MAY K J, CARLTON C E, et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution[J]. Nature Communications, 2013, 4: 2439/1-7.
    [18]
    NANDHA N K, SINGH P S, SRIVASTAVA D N. Improved oer performance on the carbon composite electrode through tailored wettability[J]. ACS Applied Energy Materials, 2021, 4(9): 9618-9626. doi: 10.1021/acsaem.1c01692
    [19]
    LAHA S, LEE Y, PODJASKI F, et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium[J]. Advanced Energy Materials, 2019, 9(15): 1803795/1-8.
    [20]
    GE R, LI L, SU J, et al. Ultrafine defective RuO2 electrocatalyst integrated on carbon cloth for robust water oxidation in acidic media[J]. Advanced Energy Materials, 2019, 9(35): 1901313/1-9.
    [21]
    DANG Y, WU T, TAN H, et al. Partially reduced Ru/RuO2 composites as efficient and pH-universal electrocatalysts for hydrogen evolution[J]. Energy & Environmental Science, 2021, 14(10): 5433-5443.
    [22]
    LU X, HAO G P, SUN X, et al. Highly dispersed metal and oxide nanoparticles on ultra-polar carbon as efficient cathode materials for Li-O2 batteries[J]. Journal of Materials Chemistry A, 2017, 5(13): 6284-6291. doi: 10.1039/C7TA00777A
    [23]
    KÖTZ R, STUCKI S, SCHERSON D, et al. In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 172(1): 211-219.
    [24]
    WU D, KUSADA K, YOSHIOKA S, et al. Efficient overall water splitting in acid with anisotropic metal nanosheets[J]. Nature Communications, 2021, 12(1): 1145/1-9.
    [25]
    WANG J, CHENG C, YUAN Q, et al. Exceptionally active and stable RuO2 with interstitial carbon for water oxidation in acid[J/OL]. Chem, 2022, 49. https://doi.org/10.1016/j.chempr.2022.02.003.
    [26]
    张璋, 胡先标. 镍铁钴磷化物纳米片阵列的制备及其电催化析氧性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201905004.htm

    ZHANG Z, HU X B. Fabrication of Ni-Fe-Co phosphide nanosheets array and its electrocatalytic oxygen evolution performance[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201905004.htm
    [27]
    HODNIK N, JOVANOVIČ P, PAVLIŠIČ A, et al. New insights into corrosion of ruthenium and ruthenium oxide nanoparticles in acidic media[J]. The Journal of Physical Chemistry C, 2015, 119(18): 10140-10147. doi: 10.1021/acs.jpcc.5b01832
    [28]
    JIN H, CHOI S, BANG G J, et al. Safeguarding the RuO2 phase against lattice oxygen oxidation during acidic water electrooxidation[J]. Energy & Environmental Science, 2021, 15(3): 1119-1130.
    [29]
    MAO J, HE C T, PEI J, et al. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice[J]. Nature Communications, 2018, 9(1): 4958/1-8.
    [30]
    LU X, SAKAI N, TANG D, et al. CoNiFe layered double hydroxide/RuO2.1 nanosheet superlattice as carbon-free electrocatalysts for water splitting and Li-O2 batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 33083-33093.
    [31]
    JAHAN M, LIU Z, LOH K P. A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR[J]. Advanced Functional Materials, 2013, 23(43): 5363-5372. doi: 10.1002/adfm.201300510
    [32]
    WANG T, WANG P, ZANG W, et al. Nanoframes of Co3O4 Mo2N heterointerfaces enable high-performance bifunctionality toward both electrocatalytic HER and OER [J]. Advanced Functional Materials, 2021, 32(7): 2107382/1-9.
    [33]
    LAURITA G, GRAJCZYK R, STOLT M, et al. Influence of structural disorder on hollandites AxRu4O8(A+=K, Rb, Rb1-xNax)[J]. Inorganic Chemistry, 2016, 55(7): 3462-3467. doi: 10.1021/acs.inorgchem.5b02897
    [34]
    FOO M L, LEE W L, SIEGRIST T, et al. Electronic characterization of alkali ruthenium hollandites: KRu4O8, RbRu4O8 and Cs0.8Li0.2Ru4O8[J]. Materials Research Bulletin, 2004, 39(11): 1663-1670. doi: 10.1016/j.materresbull.2004.05.019
    [35]
    YIN H, CHEN Z, PENG Y, et al. Dual active centers bridged by oxygen vacancies of ruthenium single-atom hybrids supported on molybdenum oxide for photocatalytic ammonia synthesis[J]. Angewandte Chemie International Edition, 2022, 61(14): e202114242/1-11.
    [36]
    FOLKESSON B. ECSA studies on the charge distribution in some dinitrogen complexes of rhenium, iridium, ruthenium, and osmium[J]. Acta Chemica Scandinavica, 1973, 27: 287-302. doi: 10.3891/acta.chem.scand.27-0287
    [37]
    GRAHAME D C. The electrical double layer and the theory of electrocapillarity[J]. Chemical Reviews, 1947, 41(3): 441-501. doi: 10.1021/cr60130a002
    [38]
    CONWAY B E, TILAK B V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H[J]. Electrochimica Acta, 2002, 47(22): 3571-3594.
    [39]
    KÖTZ R, CARLEN M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15): 2483-2498.
  • Cited by

    Periodical cited type(6)

    1. 方艳林,王升帅,张伟,张妮,谢璇,张厚勇. 基于PEMS的非四机械尾气碳排放特征探析. 环境监控与预警. 2025(01): 98-102 .
    2. 吴雨涟,杨洁,邵智娟,沈春其,裴程伟,秦龙飞,郑嘉兴,徐婷婷,阚诗烨,宋程璐,崔璀. 苏州市机动车排放清单及特征研究. 环境科学学报. 2024(09): 129-139 .
    3. 陈佳昊,项雅静. 基于拥堵系数的上海市道路高分辨率碳排放时空分配方法研究. 环境科学与管理. 2024(11): 16-21 .
    4. 石文哲,王峰,付合英,李忠飞,王亮,于海洋,唐忠锋. 基于全生命周期法的矿用柴油重卡碳核算. 环境工程学报. 2023(06): 1907-1914 .
    5. 菅月诚,彭娜娜,高艳珊,王强. “双碳”背景下细颗粒物和臭氧污染研究进展. 能源环境保护. 2023(05): 190-200 .
    6. 代洪娜,曾煜磊,施庆利,孙婷. 碳达峰与碳中和背景下省域高速公路网碳排放精细化测算方法. 华南师范大学学报(自然科学版). 2023(04): 1-13 .

    Other cited types(6)

Catalog

    Article views (1223) PDF downloads (118) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return