Citation: | JI Zhanjiang. The Dynamical Property of G-Strong Chain Recurrent Point Set in Metric G-space[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 115-119. DOI: 10.6054/j.jscnun.2022034 |
[1] |
LUO X F, NIE X X, YIN J D. On the shadowing property and shadowable point of set-valued dynamical systems[J]. Acta Mathematica Sinica, 2020, 36(12): 1384-1394. doi: 10.1007/s10114-020-9331-3
|
[2] |
WANG H Y, LIU Q. Ergodic shadowing properties of ite-rated function systems[J]. Bulletin of the Malaysian Ma-thematical Sciences Society, 2020, 44(2): 767-783.
|
[3] |
WU X X, ZHANG X, MA X. Various shadowing in linear dynamical systems[J]. International Journal of Bifurcation and Chaos, 2019, 29(3): 1-10.
|
[4] |
KANG B, KOO N, LEE M. On the average shadowing pro-perty in linear dynamical systems[J]. Journal of the Chung-cheong Mathematical Society, 2018, 31(1): 167-175.
|
[5] |
汪火云, 曾鹏. 平均伪轨的部分跟踪[J]. 中国科学: 数学, 2016, 46(4): 781-792. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK201606002.htm
WANG H Y, ZENG P. Partial shadowing of average pseudo-orbits[J]. Scientific Sinica: Mathematica, 2016, 46(4): 781-792. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK201606002.htm
|
[6] |
冀占江. 乘积空间与拓扑群作用下逆极限空间的动力学性质[D]. 南宁: 广西大学, 2014.
JI Z J. Dynamical property of product space and the inverse limit space of a topological group action[D]. Nanning: Guangxi University, 2014.
|
[7] |
孟鑫, 刘岩. 非自治离散动力系统的强跟踪性[J]. 吉林师范大学学报(自然科学版), 2016, 37(3): 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXK201603017.htm
MENG X, LIU Y. The strongly shadowing property of the nonautonomous dynamical systems[J]. Journal of Jilin Normal University(Natural Science Edition), 2016, 37(3): 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXK201603017.htm
|
[8] |
LI Z P, ZHOU Y H. Quasi-shadowing and limit quasi-shadowing for quasi-partially hyperbolic strings of flows[J]. Journal of Differential Equations, 2020, 269(12): 11062-11085. doi: 10.1016/j.jde.2020.07.030
|
[9] |
KRYZHEVICH S G, PIYUGIN S Y. Inverse shadowing and related measures[J]. Science China: Mathematics, 2020, 63(9): 1825-1836. doi: 10.1007/s11425-019-1609-8
|
[10] |
LEE M. Orbital shadowing property on chain transitive sets for generic diffeomorphisms[J]. Acta Universitatis Sapientiae: Mathematica, 2020, 12(1): 146-154. doi: 10.2478/ausm-2020-0009
|
[11] |
赵俊玲. 强链回归集与强跟踪性[J]. 数学研究, 2004, 37(3): 286-291. doi: 10.3969/j.issn.1006-6837.2004.03.010
ZHAO J L. Strong chain recurrent sets and strong shadowing property[J]. Journal of Mathematical Study, 2004, 37(3): 286-291. doi: 10.3969/j.issn.1006-6837.2004.03.010
|
[12] |
冀占江. 度量空间中强链回归点集的研究[J]. 西南师范大学学报(自然科学版), 2019, 44(2): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201902008.htm
JI Z J. On strong chain recurrent point set in metric space[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(2): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201902008.htm
|
[13] |
冀占江, 张更容, 涂井先. 强跟踪性和强链回归点集的研究[J]. 河南大学学报(自然科学版), 2019, 49(6): 739-744. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR201906013.htm
JI Z J, ZHANG G R, TU J X. The research of strong sha-dowing property and strong chain recurrent point set[J]. Journal of Henan University(Natural Science), 2019, 49(6): 739-744. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR201906013.htm
|
[14] |
李晓婷. 紧致度量空间上连续自映射的一些链回归性质[D]. 南宁: 广西大学, 2015.
LI X T. Some chain recurrent properties of continuous self-maps on compact metric space[D]. Nanning: Guangxi University, 2015.
|
[15] |
AHMADI S A. Invariants of topological G-conjugacy on G-Spaces[J]. Mathematica Moravica, 2014, 18(1): 67-75. doi: 10.5937/MatMor1401067A
|
[16] |
CHOI T, KIM J. Decomposition theorem on G-spaces[J]. Osaka Journal of Mathematics, 2009, 46(1): 87-104.
|