• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
JI Zhanjiang. The Dynamical Property of G-Strong Chain Recurrent Point Set in Metric G-space[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 115-119. DOI: 10.6054/j.jscnun.2022034
Citation: JI Zhanjiang. The Dynamical Property of G-Strong Chain Recurrent Point Set in Metric G-space[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 115-119. DOI: 10.6054/j.jscnun.2022034

The Dynamical Property of G-Strong Chain Recurrent Point Set in Metric G-space

More Information
  • Received Date: April 23, 2021
  • Available Online: May 11, 2022
  • The topological structure and characteristics of G-strong chain regression point set are studied in the metric space under topological group action and some conclusions of G-strong chain regression point set are obtained: (1) Let (X, d) be a compact metric G-space, G be a compact topological group, and f: XX be a continuous map; then the set SCRG(f) is a closed set; (2) Let (X, d) be a compact metric G-space, G be a compact topological group, and f: XX be an homeomorphic pseudoequivalent map; then f(SCRG(f))=SCRG(f); (3) Let(X, d)be a compact metric G-space, f: XX be an homeomorphic pseudoequivalent map and the metric d be invariant to group G; then SCRG(f)=SCRG(f-1).
  • [1]
    LUO X F, NIE X X, YIN J D. On the shadowing property and shadowable point of set-valued dynamical systems[J]. Acta Mathematica Sinica, 2020, 36(12): 1384-1394. doi: 10.1007/s10114-020-9331-3
    [2]
    WANG H Y, LIU Q. Ergodic shadowing properties of ite-rated function systems[J]. Bulletin of the Malaysian Ma-thematical Sciences Society, 2020, 44(2): 767-783.
    [3]
    WU X X, ZHANG X, MA X. Various shadowing in linear dynamical systems[J]. International Journal of Bifurcation and Chaos, 2019, 29(3): 1-10.
    [4]
    KANG B, KOO N, LEE M. On the average shadowing pro-perty in linear dynamical systems[J]. Journal of the Chung-cheong Mathematical Society, 2018, 31(1): 167-175.
    [5]
    汪火云, 曾鹏. 平均伪轨的部分跟踪[J]. 中国科学: 数学, 2016, 46(4): 781-792. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK201606002.htm

    WANG H Y, ZENG P. Partial shadowing of average pseudo-orbits[J]. Scientific Sinica: Mathematica, 2016, 46(4): 781-792. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK201606002.htm
    [6]
    冀占江. 乘积空间与拓扑群作用下逆极限空间的动力学性质[D]. 南宁: 广西大学, 2014.

    JI Z J. Dynamical property of product space and the inverse limit space of a topological group action[D]. Nanning: Guangxi University, 2014.
    [7]
    孟鑫, 刘岩. 非自治离散动力系统的强跟踪性[J]. 吉林师范大学学报(自然科学版), 2016, 37(3): 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXK201603017.htm

    MENG X, LIU Y. The strongly shadowing property of the nonautonomous dynamical systems[J]. Journal of Jilin Normal University(Natural Science Edition), 2016, 37(3): 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXK201603017.htm
    [8]
    LI Z P, ZHOU Y H. Quasi-shadowing and limit quasi-shadowing for quasi-partially hyperbolic strings of flows[J]. Journal of Differential Equations, 2020, 269(12): 11062-11085. doi: 10.1016/j.jde.2020.07.030
    [9]
    KRYZHEVICH S G, PIYUGIN S Y. Inverse shadowing and related measures[J]. Science China: Mathematics, 2020, 63(9): 1825-1836. doi: 10.1007/s11425-019-1609-8
    [10]
    LEE M. Orbital shadowing property on chain transitive sets for generic diffeomorphisms[J]. Acta Universitatis Sapientiae: Mathematica, 2020, 12(1): 146-154. doi: 10.2478/ausm-2020-0009
    [11]
    赵俊玲. 强链回归集与强跟踪性[J]. 数学研究, 2004, 37(3): 286-291. doi: 10.3969/j.issn.1006-6837.2004.03.010

    ZHAO J L. Strong chain recurrent sets and strong shadowing property[J]. Journal of Mathematical Study, 2004, 37(3): 286-291. doi: 10.3969/j.issn.1006-6837.2004.03.010
    [12]
    冀占江. 度量空间中强链回归点集的研究[J]. 西南师范大学学报(自然科学版), 2019, 44(2): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201902008.htm

    JI Z J. On strong chain recurrent point set in metric space[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(2): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201902008.htm
    [13]
    冀占江, 张更容, 涂井先. 强跟踪性和强链回归点集的研究[J]. 河南大学学报(自然科学版), 2019, 49(6): 739-744. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR201906013.htm

    JI Z J, ZHANG G R, TU J X. The research of strong sha-dowing property and strong chain recurrent point set[J]. Journal of Henan University(Natural Science), 2019, 49(6): 739-744. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR201906013.htm
    [14]
    李晓婷. 紧致度量空间上连续自映射的一些链回归性质[D]. 南宁: 广西大学, 2015.

    LI X T. Some chain recurrent properties of continuous self-maps on compact metric space[D]. Nanning: Guangxi University, 2015.
    [15]
    AHMADI S A. Invariants of topological G-conjugacy on G-Spaces[J]. Mathematica Moravica, 2014, 18(1): 67-75. doi: 10.5937/MatMor1401067A
    [16]
    CHOI T, KIM J. Decomposition theorem on G-spaces[J]. Osaka Journal of Mathematics, 2009, 46(1): 87-104.

Catalog

    Article views (284) PDF downloads (58) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return