Citation: | WANG Zhaojun, WU Tingting, ZENG Taishan. An Improved Compact Sixth-order Finite Difference Scheme for the 2D Helmholtz Equation[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 90-100. DOI: 10.6054/j.jscnun.2022031 |
[1] |
BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2): 185-200. doi: 10.1006/jcph.1994.1159
|
[2] |
TEZAUR R, MACEDO A, FARHAT C, et al. Three-dimensional finite element calculations in acoustic scatte-ring using arbitrarily shaped convex artificial boundaries[J]. International Journal for Numerical Methods in Engineering, 2002, 53(6): 1461-1476. doi: 10.1002/nme.346
|
[3] |
JO C H, SHIN C, SUH J H. An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator[J]. Geophysics, 1996, 61(2): 529-537. doi: 10.1190/1.1443979
|
[4] |
王坤, 张扬, 郭瑞. Helmholtz方程有限差分方法概述[J]. 计算数学, 2018, 40(2): 171-190. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX201802005.htm
WANG K, ZHANG Y, GUO R. Finite difference methods for the Helmholtz equation: a brief review[J]. Mathema-tica Numerica Sinica, 2018, 40(2): 171-190. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX201802005.htm
|
[5] |
BABUŠKA I, SAUTER S A. Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?[J]. SIAM Journal on Numerical Analysis, 1997, 34(6): 2392-2423. doi: 10.1137/S0036142994269186
|
[6] |
BABUŠKA I, IHLENBURG F, PAIK E T, et al. A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 128(3/4): 325-359.
|
[7] |
IHLENBURG F, BABUŠKA I. Finite element solution of the Helmholtz equation with high wave number, Part I: the h-version of the FEM[J]. Computers and Mathematics with Applications, 1995, 30(9): 9-37. doi: 10.1016/0898-1221(95)00144-N
|
[8] |
武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX201802006.htm
WU H J. FEM and CIP-FEM for Helmholtz equation with high wave number[J]. Mathematica Numerica Sinica, 2018, 40(2): 191-213. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX201802006.htm
|
[9] |
CHENG D S, TAN X, ZENG T S. A dispersion minimizing finite difference scheme for the Helmholtz equation based on point-weighting[J]. Computers and Mathematics with Applications, 2017, 73(11): 2345-2359. doi: 10.1016/j.camwa.2017.04.005
|
[10] |
FU Y P. Compact fourth-order finite difference schemes for Helmholtz equation with high wave numbers[J]. Journal of Computational Mathematics, 2008, 26(1): 98-111.
|
[11] |
HARARI I, TURKEL E. Accurate finite difference methods for time-harmonic wave propagation[J]. Journal of Computational Physics, 1995, 119: 252-270. doi: 10.1006/jcph.1995.1134
|
[12] |
KUMAR N, DUBEY R K. A new development of sixth order accurate compact scheme for the Helmholtz equation[J]. Journal of Applied Mathematics and Computing, 2020, 62: 637-662. doi: 10.1007/s12190-019-01301-x
|
[13] |
SINGER I, TURKEL E. High-order finite difference methods for the Helmholtz equation[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 163(1/2/3/4): 343-358.
|
[14] |
SUTMANN G. Compact finite difference schemes of sixth order for the Helmholtz equation[J]. Journal of Computational and Applied Mathematics, 2007, 203(1): 15-31. doi: 10.1016/j.cam.2006.03.008
|
[15] |
WU T T. A dispersion minimizing compact finite difference scheme for the 2D Helmholtz equation[J]. Journal of Computational and Applied Mathematics, 2017, 311: 497-512. doi: 10.1016/j.cam.2016.08.018
|
[16] |
WU T T, XU R M. An optimal compact sixth-order finite difference scheme for the Helmholtz equation[J]. Computers and Mathematics with Applications, 2018, 75(7) : 2520- 2537. doi: 10.1016/j.camwa.2017.12.023
|
[17] |
朱昌允, 秦国良, 徐忠. Chebyshev谱元方法结合并行算法求解三维区域的Helmholtz方程[J]. 应用力学学报, 2012, 29(3): 247-251. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201203005.htm
ZHU C Y, QIN G L, XU Z. Parallel Chebyshev spectral element method for Helmholtz equation in 3D domain[J]. Chinese Journal of Applied Mechanics, 2012, 29(3): 247-251. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201203005.htm
|
[18] |
程东升, 刘志勇, 薛国伟, 等. 一种针对大波数Helmholtz方程的高性能并行预条件迭代求解算法[J]. 计算机科学, 2018, 45(7): 299-306. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201807051.htm
CHENG D S, LIU Z Y, XUE G W, et al. High-perfor-mance parallel preconditioned iterative solver for Helmholtz equation with large wavenumbers[J]. Computer Science, 2018, 45(7): 299-306. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201807051.htm
|
[19] |
WU T T, SUN Y R, CHENG D S. A new finite difference scheme for the 3D Helmholtz equation with a preconditioned iterative solver[J]. Applied Numerical Mathema-tics, 2021, 161: 348-371. doi: 10.1016/j.apnum.2020.11.023
|
[20] |
CHEN Z Y, CHENG D S, FENG W, et al. An optimal 9-point finite difference scheme for the Helmholtz equation with PML[J]. International Journal of Numerical Analysis and Modeling, 2013, 10(2): 389-410.
|
[21] |
TUEKEL E, GORDON D, GORDON R, et al. Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number[J]. Journal of Computational Physics, 2013, 232(1): 272-287.
|
[22] |
杨胜良. 三对角行列式及其应用[J]. 工科数学, 2002, 18(2): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GKSX200202025.htm
YANG S L. Tridiagonal determinant and its applications[J]. Journal of Mathematics for Technology, 2002, 18(2): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GKSX200202025.htm
|
[23] |
ERLANGGA Y, TURKEL E. Iterative schemes for high order compact discretizations to the exterior Helmholtz equation[J]. ESAIM: Mathematical Modelling and Nume-rical Analysis, 2012, 46(3): 647-660.
|