• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WANG Xiaohui, LI Xue, HE Wenhao, LU Guiwu, ZHOU Guanggang, CHEN Junqing, ZHAO Ge, WANG Ning. Characteristics of CO2 Adsorption and Permeability of Porous Carbon-Nitrogen Membranes Coupling-regulated by Charge and Strain[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 18-23. DOI: 10.6054/j.jscnun.2022021
Citation: WANG Xiaohui, LI Xue, HE Wenhao, LU Guiwu, ZHOU Guanggang, CHEN Junqing, ZHAO Ge, WANG Ning. Characteristics of CO2 Adsorption and Permeability of Porous Carbon-Nitrogen Membranes Coupling-regulated by Charge and Strain[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 18-23. DOI: 10.6054/j.jscnun.2022021

Characteristics of CO2 Adsorption and Permeability of Porous Carbon-Nitrogen Membranes Coupling-regulated by Charge and Strain

More Information
  • Received Date: July 22, 2021
  • Available Online: May 11, 2022
  • In order to promote the development of new materials and technologies to effectively capture and separate CO2, a new charge-and strain-controlled gas capture and permeation method is proposed, which has the advantages of reversibility and controllable dynamics. The molecular dynamics (MD) simulation and first-principles density function (DFT) calculation are used to analyze the effects of CO2 capture and penetration on porous g-C9N7 nanosheets with different charge densities and stress controls. Through charge regulation, the molecular permeance of CO2 can reach 5.94×107 GPU (0.019 899 mol/(s·Pa·m2)). Under tensile strain conditions, the CO2 permeance increases with the increase of tensile strain, and the maximum permeance of 7.5% tensile strain rate g-C9N7 membrane is 3.61×107 GPU(0.012 094 mol/(s ·Pa ·m2)). More interestingly, a feasible way is explored to combine negative charge with strain engineering to study synergistic effects. When the negative charge is 1 e and the tensile strain rate is 3.0%, the CO2 permeability reaches 3.18×107 GPU(0.001 065 mol/(s ·Pa ·m2)), which is 9 times of that when only 1 e is added and 8 times of that when only 3.0% is added. These results provide useful guidance for the development of advanced materials with highly controllable CO2 capture and separation properties.
  • [1]
    卢金凯, 张梦, 李斌, 等. 功能化氧化石墨烯催化CO2的化学固定[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 35-42. doi: 10.6054/j.jscnun.2021041

    LU J K, ZHANG M, LI B, et al. Chemical fixation of CO2 catalyzed by functionalized graphene oxide[J]. Journal of South China normal University(Natural Science Edition), 2021, 53(3): 35-42. doi: 10.6054/j.jscnun.2021041
    [2]
    QAZI S, GÓMEZ-COMA L, ALBO J, et al. CO2 capture in a hollow fiber membrane contactor coupled with ionic liquid: influence of membrane wetting and process parameters[J]. Separation and Purification Technology, 2020, 233(14): 115986/1-9.
    [3]
    BERNARDO P, DRIOLI E, GOLEMME G. Membrane gas separation: a review/state of the art[J]. Industrial and Engineering Chemistry Research, 2009, 48(10): 4638-4663. doi: 10.1021/ie8019032
    [4]
    D'ALESSANDRO D M, SMIT B, LONG J R. Carbon dio-xide capture: prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082. doi: 10.1002/anie.201000431
    [5]
    ESTEVEZ L, BARPAGA D, ZHENG J, et al. Hierarchically porous carbon materials for CO2 capture: the role of pore structure[J]. Industrial and Engineering Chemistry Research, 2018, 57(4): 1262-1268. doi: 10.1021/acs.iecr.7b03879
    [6]
    POLONI R, LEE K, BERGER R F, et al. Understanding trends in CO2 adsorption in metal-organic frameworks with open-metal sites[J]. The Journal of Physical Chemistry Letters, 2014, 5(5): 861-865. doi: 10.1021/jz500202x
    [7]
    YAN T, LAN Y, TONG M, et al. Screening and design of covalent organic framework membranes for CO2/CH4 separation[J]. ACS Sustainable Chemistry and Engineering, 2018, 7(1): 1220-1227.
    [8]
    张灿鹏, 邵志刚. CO2和CO分子在五边形石墨烯表面的吸附行为[J]. 华南师范大学学报(自然科学版), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003

    ZHANG C P, SHAO Z G. The adsorption behavior of CO2 and CO on penta-graphene[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003
    [9]
    JIANG D E, COOPER V R, DAI S. Porous graphene as the ultimate membrane for gas separation[J]. Nano Letters, 2009, 9(12): 4019-4024. doi: 10.1021/nl9021946
    [10]
    XING W, LIU C, ZHOU Z, et al. Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction[J]. Energy and Environmental Science, 2012, 5(6): 7323-7327. doi: 10.1039/c2ee21653a
    [11]
    ZHAO Y, LIU X, YAO K X, et al. Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon[J]. Chemistry of Materials, 2012, 24(24): 4725-4734. doi: 10.1021/cm303072n
    [12]
    LI X, GUO T, ZHU L, et al. Charge modulated CO2 capture of C3N nanosheet: insights from DFT calculations[J]. Chemical Engineering Journal, 2018, 338: 92-98. doi: 10.1016/j.cej.2017.12.113
    [13]
    MA Z, ZHAO X, TANG Q, et al. Computational prediction of experimentally possible g-C3N3 monolayer as hydrogen purification membrane[J]. International Journal of Hydrogen Energy, 2014, 39(10): 5037-5042. doi: 10.1016/j.ijhydene.2014.01.046
    [14]
    SATHISHKUMAR N, WU S Y, CHEN H T. Chargeregulated, electric-field and combined effect controlled switchable CO2 capture and separation on penta-C2N nanosheet: a computational study[J]. Chemical Engineering Journal, 2021, 407: 127194/1-14.
    [15]
    CHANG X, ZHU L, XUE Q, et al. Charge controlled switchable CO2/N2 separation for g-C10N9 membrane: insights from molecular dynamics simulations[J]. Journal of CO2 Utilization, 2018, 26: 294-301. doi: 10.1016/j.jcou.2018.05.017
    [16]
    LI X, YIN Y, CHANG X, et al. Doping-induced enhancement of CO2 adsorption on negatively charged C3N nanosheet: insights from DFT calculations[J]. Chemical Engineering Journal, 2020, 387: 123403/1-8.
    [17]
    LIU Z, ZHAO G, ZHANG X, et al. Superior performance porous carbon nitride nanosheets for helium separation from natural gas: insights from MD and DFT simulations[J]. Chinese Journal of Chemical Engineering, 2021, 37: 46-53. doi: 10.1016/j.cjche.2021.05.001
    [18]
    SUN C, WEN B, BAI B. Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation[J]. Chemical Engineering Science, 2015, 138(6): 16-21.
    [19]
    ZHU L, CHANG X, YIN Y, et al. Theoretical study of strain-controlled C2X (X=N, O) membrane for CO2/C2H2 separation[J]. Applied Surface Science, 2020, 530: 147250/1-8.
    [20]
    DENG S, HU H, ZHUANG G, et al. A strain-controlled C2N monolayer membrane for gas separation in PEMFC application[J]. Applied Surface Science, 2018, 441: 408-414. doi: 10.1016/j.apsusc.2018.02.042

Catalog

    Article views (547) PDF downloads (80) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return