• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WANG Jingnan, GUO Yongquan, YIN Linhan, ZHAO Xing, GUO Xinpeng, XIE Nana. The Preparation and Magnetic and Optical Properties of Cu1-xCoxInTe2 Diluted Magnetic Semiconductor[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 1-6. DOI: 10.6054/j.jscnun.2022018
Citation: WANG Jingnan, GUO Yongquan, YIN Linhan, ZHAO Xing, GUO Xinpeng, XIE Nana. The Preparation and Magnetic and Optical Properties of Cu1-xCoxInTe2 Diluted Magnetic Semiconductor[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 1-6. DOI: 10.6054/j.jscnun.2022018

The Preparation and Magnetic and Optical Properties of Cu1-xCoxInTe2 Diluted Magnetic Semiconductor

More Information
  • Received Date: September 22, 2021
  • Available Online: May 11, 2022
  • The diluted magnetic semiconductors Cu1-xCoxInTe2 (Co doping ratio x=0, 0.1, 0.2, 0.3) was synthesized through vacuum arc melting. X-ray diffractometer (XRD), vibrating sample magnetometer(VSM), and UV-Vis-NIR spectrometer were used to investigate their crystal structures and magnetic and optical properties, respectively. The main phases of Cu1-xCoxInTe2 crystalline has tetragonal structure with a space group of I42d. The atomic occupations are 4a(0, 0, 0) for Co and Cu atoms, 4b(0, 0, 1/2) for In and 8d(x, 1/4, 1/8) for Te, respectively. Cu1-xCoxInTe2 shows room temperature ferromagnetic characteristics, and their field dependence of magnetization follows a Langevin model. Their saturation magnetization increases with increased x. The bandgaps of Cu1-xCoxInTe2 can be adjusted by controlling the doping amount of Co, which makes possible its potential application as photovoltaic material.
  • [1]
    DIVINCENZO D P. Quantum computation[J]. Science, 1995, 270: 255-261. doi: 10.1126/science.270.5234.255
    [2]
    OHNO Y, YOUNG D K, BESCHOTEN B, et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure[J]. Nature, 1999, 402: 790-792. doi: 10.1038/45509
    [3]
    BETTHAUSEN C, DOLLINGER T, SAARIKOSKI D, et al. Spin-transistor action via tunable Landau-Zener transitions[J]. Science, 2012, 337: 324-327. doi: 10.1126/science.1221350
    [4]
    HAGELE D, RUDOLPH J, DOHRMANN S, et al. Spintronics with semiconductors[C]//2004 International Conference on MEMS, Nano and Smart Systems. Alberta: IEEE Computer Society, 2004.
    [5]
    OHNO H, MUNEKATA H, PENNEYS T, et al. Magnetotransport properties of p-type(In, Mn)As diluted magne-tic Ⅲ-Ⅴ semiconductors[J]. Physical Review Letters, 1992, 68: 2664-2667. doi: 10.1103/PhysRevLett.68.2664
    [6]
    AKAI H. Ferromagnetism and its stability in the diluted magnetic semiconductor(In, Mn)As[J]. Physical Review Letters, 1998, 81: 3002-3005. doi: 10.1103/PhysRevLett.81.3002
    [7]
    KOSHIHARA S, OIWA A, HIRASAWA M, et al. Ferromagnetic order induced by photogenerated carriers in magnetic Ⅲ-Ⅴ semiconductor heterostructures of(In, Mn)As/GaSb[J]. Physical Review Letters, 1997, 78: 4617-4620. doi: 10.1103/PhysRevLett.78.4617
    [8]
    SONG C, ZENG F, GENG K W, et al. Substrate-dependent magnetization in Co-doped ZnO insulating films[J]. Physical Review B, 2007, 76: 045215/1-8.
    [9]
    TIAN Y F, YAN S S, CAO Q, et al. Origin of large positive magnetoresistance in the hard-gap regime of epitaxial Co-doped ZnO ferromagnetic semiconductors[J]. Physical Review B, 2009, 79: 115209/1-5.
    [10]
    LI Q, SHEN T T, DAI Z K, et al. Spin polarization of Zn1-xCox O probed by magnetoresistance[J]. Applied Physical Letters, 2012, 101: 172405/1-4.
    [11]
    QI S F, QIAO Z H, DENG X Z, et al, High-temperature quantum anomalous hall effect in n-p Codoped topological insulators[J]. Physical Review Letters, 2016, 117: 056804/1-6.
    [12]
    许小红, 李小丽, 齐世飞, 等. 氧化物稀磁半导体的研究进展[J]. 物理学进展, 2012, 32: 199-231. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXJ201204002.htm

    XU X H, LI X L, QI S F, et al. Recent progress in oxide based diluted magnetic semiconductors[J]. Progress in Physics, 2012, 32: 199-231. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXJ201204002.htm
    [13]
    邓正, 赵侃, 靳常青. 电荷自旋注入机制分离的新型稀磁半导体[J]. 物理, 2013, 42(10): 682-688. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201310001.htm

    DENG Z, ZHAO K, JIN C Q. New types of diluted magnetic semiconductors with decoupled charge and spin doping[J]. Physics, 2013, 42(10): 682-688. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201310001.htm
    [14]
    CHO S, CHOI S, CHA G B, et al. Room-temperature ferromagnetism in(Zn1-xMnx)GeP2 semiconductors[J]. Physical Review Letters, 2002, 88: 257203/1-4.
    [15]
    MEDVEDKIN G A, ISHIBASHI T, NISHI T, et al. Room temperature ferromagnetism in novel diluted magnetic semiconductor Cd1-xMnxGeP2[J]. Japanese Journal of Applied Physicis, 2000, 39: 949-951. doi: 10.1143/JJAP.39.L949
    [16]
    MAHADEVAN P, ZUNGER A. Room-temperature ferromagnetism in Mn-doped semiconducting CdGeP2[J]. Physical Review Letters, 2002, 88: 47205/1-4.
    [17]
    WANG T, GUO Y Q, WANG C, et al. The effect of Co and Ce codoping in CuIn0.9CexCo0.1-xTe2[J]. Journal of Magnetism and Magnetic Materials, 2020, 502: 166506/1-6.
    [18]
    WANG T, GUO Y Q, WANG C, et al. Effects on magnetic properties and light absorption bandgaps of lattice distortions in CuIn1-xCoxSe2 chalcopyrites[J]. Journal of Alloys and Compounds, 2019, 774: 229-235. doi: 10.1016/j.jallcom.2018.09.072
    [19]
    GUO Y Q, LI S, WANG T, et al. Structure and magnetic properties of CuIn1-xTxTe2(T=Co, Mn)[J]. AIP Advances, 2017, 7(8): 085108/1-10.
    [20]
    郭常霖, 黄月鸿, 深鹤年. TREOR多晶X射线衍射图指标化程序的适用性[J]. 硅酸盐学报, 1996(6): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB606.008.htm

    KUO C L, HUANG Y H, SHEN H N. Adaptability of TREOR program for indexing X-ray powder diffraction pattern of polycrystalline materials[J]. Journal of The Chinese Creamic Society, 1996(6): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB606.008.htm
    [21]
    LIU S, LI H, LIU J, et al. Obtaining optimal structural data from X-ray powder diffraction using the Rietveld method[J]. Powder Diffraction, 2014, 29(4): 396-403. doi: 10.1017/S0885715614000682
    [22]
    郭新鹏, 郭永权, 王京南, 等. SmCo5型中熵、高熵金属间化合物的结构与磁性[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 1-9. doi: 10.6054/j.jscnun.2021036

    GUO X P, GUO Y Q, WANG J N, et al. The structure and magnetic properties of SmCo5 type medium and high-entropy intermetallic compounds[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(3): 1-9. doi: 10.6054/j.jscnun.2021036
    [23]
    TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi, 1996, 15(2): 627-637.
    [24]
    CUI J, DONG G, YANG Z, et al. Low dielectric loss and enhanced tunable properties of Mn-doped BST/MgO composites[J]. Journal of Alloys and Compounds, 2009, 490(1): 353-357.
    [25]
    陈冬, 张漫虹, 钟美桃, 等. 镁铝共掺杂氧化锌薄膜的制备与光电性能研究[J]. 广东石油化工学院学报, 2021, 31(4): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SHGD202104016.htm

    CHEN D, ZHANG M H, ZHONG M T, et al. Preparation and optoelectronic characteristics of deposited Mg and Al Co-doped ZnO thin films[J]. Journal of Guangdong University of Petrochemical Technology, 2021, 31(4): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SHGD202104016.htm
    [26]
    KUMAR N, SINGH R K, SATYAPAL H K. Structural, optical, and magnetic properties of non-stoichiometric lithium substituted magnesium ferrite nanoparticles for multifunctional applications[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(12): 9231-9241. doi: 10.1007/s10854-020-03454-z

Catalog

    Article views (569) PDF downloads (108) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return