• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
PI Lixiang, CUI Guimei. Optimizing GBDT's Strip Coiling Temperature Prediction with the Evolutionary Algorithm[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 122-127. DOI: 10.6054/j.jscnun.2022017
Citation: PI Lixiang, CUI Guimei. Optimizing GBDT's Strip Coiling Temperature Prediction with the Evolutionary Algorithm[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 122-127. DOI: 10.6054/j.jscnun.2022017

Optimizing GBDT's Strip Coiling Temperature Prediction with the Evolutionary Algorithm

More Information
  • Received Date: June 21, 2021
  • Available Online: March 13, 2022
  • Considering the low hit rate of the coiling temperature prediction of the laminar cooling system of the 2 250 mm hot rolling production line in Steelworks B, the gradient boosting decision tree optimized with the diffe-rential evolution algorithm (DE-GBDT) is used to establish the strip coiling temperature prediction model. Five regression prediction models, including Support Vector Machine (DE-SVM) and Wavelet Neural Network (DE-WNN) optimized with the differential evolution algorithm and the three basic prediction models (Gradient Boosting Decision Tree (GBDT), Support Vector Machine (SVM) and Wavelet Neural Network (WNN)), are added to the experiment for comparison. The experimental results show that DE-GBDT prediction model can provide strong su-pport for improving the precision of strip coiling temperature control: (1)compared with DE-SVM and DE-WNN, the DE-GBDT prediction model has the smallest error indicators and the mean square error is 18.232; (2)compared with the three basic prediction models, the error indicators of the DE-GBDT prediction model are significantly smaller than those of the three basic prediction models; compared with the GBDT prediction model, the hit rate of the DE-GBDT prediction model has increased by 2.9% and the mean square error has been reduced by 40.294, indicating that the differential evolution algorithm can significantly improve the model performance.
  • [1]
    谭明皓, 柴天佑. 基于案例推理的层流冷却过程建模[J]. 控制理论与应用, 2005(2): 248-253;260. doi: 10.3969/j.issn.1000-8152.2005.02.015

    TAN M H, CAI T Y. Modeling of the laminar cooling process with case_based reasoning[J]. Control Theory & Applications, 2005(2): 248-253;260. doi: 10.3969/j.issn.1000-8152.2005.02.015
    [2]
    李振垒, 胡啸, 李海军, 等. 热轧带钢超快冷模型及自适应控制系统的研究和开发[J]. 钢铁, 2013, 48(2): 44-48. doi: 10.3969/j.issn.1672-4224.2013.02.013

    LI Z L, HU X, LI H J, et al. Study and development of ultra-fast cooling model and self-adaptive control system of hot strip rolling[J]. Iron and Steel, 2013, 48(2): 44-48. doi: 10.3969/j.issn.1672-4224.2013.02.013
    [3]
    孙铁军, 杨卫东, 程艳明, 等. 用改进遗传算法优化的带钢卷取温度预报模型[J]. 控制理论与应用, 2015, 32(8): 1106-1113.

    SUN T J, YANG W D, CHENG Y M, et al. Improved genetic algorithm for optimizing prediction model of strip coiling temperature[J]. Control Theory & Applications, 2015, 32(8): 1106-1113.
    [4]
    马丽坤, 韩斌, 王君, 等. 基于BP神经网络的热轧带钢卷取温度预报[J]. 钢铁研究学报, 2006(11): 27-30. doi: 10.3321/j.issn:1001-0963.2006.11.007

    MA L K, HAN B, WANG J, et al. Prediction of coiling temperature of hot rolled strip based on BP Neural Networks[J]. Journal of Iron and Steel Research, 2006(11): 27-30. doi: 10.3321/j.issn:1001-0963.2006.11.007
    [5]
    石孝武, 申群太. 带钢卷取温度高精度预报的遗传神经网络方法[J]. 计算机工程与应用, 2008(16): 225-227;235. doi: 10.3778/j.issn.1002-8331.2008.16.069

    SHI X W, SHEN Q T. Genetic neural network method for high-accuracy prediction of coiling temperature of hot rolled strip[J]. Computer Engineering and Applications, 2008(16): 225-227;235. doi: 10.3778/j.issn.1002-8331.2008.16.069
    [6]
    郭强, 张超, 莫天生. 人工鱼群神经网络在热连轧卷取温度预报中的应用[J]. 科技导报, 2010, 28(1): 74-77.

    GUO Q, ZHANG C, MO T S. Application of artificial fish-swarm neural network in coiling temperature forecasting of hot rolled strip[J]. Science & Technology Review, 2010, 28(1): 74-77.
    [7]
    徐继伟, 杨云. 集成学习方法: 研究综述[J]. 云南大学学报(自然科学版), 2018, 40(6): 1082-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ201806004.htm

    XU J W, YANG Y. A survey of ensemble learning approaches[J]. Journal of Yunnan University(Natural Science Edition), 2018, 40(6): 1082-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ201806004.htm
    [8]
    王伟, 匡祯辉, 谢少捷, 等. 热镀锌钢卷力学性能GBDT预报模型[J]. 福州大学学报(自然科学版), 2020, 48(5): 602-609. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ202005010.htm

    WANG W, KUANG Z H, XIE S J, et al. Research on GBDT prediction model of mechanical properties of hot dip galvanized steel coils[J]. Journal of Fuzhou University(Natural Science Edition), 2020, 48(5): 602-609. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ202005010.htm
    [9]
    谷云东, 马冬芬, 程红超. 基于相似数据选取和改进梯度提升决策树的电力负荷预测[J]. 电力系统及其自动化学报, 2019, 31(5): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZD201905012.htm

    GU Y D, MA D F, CHEN H C. Power load forecasting based on similar-data selection and improved gradient boosting decision tree[J]. Proceedings of the CSU-EPSA, 2019, 31(5): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZD201905012.htm
    [10]
    FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232. doi: 10.1214/aos/1013203450
    [11]
    CORTES C, VAPNIK V N. Support vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
    [12]
    ZHANG Q H, BENVENISTE. A wavelet network[J]. IEEE Traps on Neuralnetworks, 1992, 3(6): 889-898.
    [13]
    段大高, 盖新新, 韩忠明, 等. 基于梯度提升决策树的微博虚假消息检测[J]. 计算机应用, 2018, 38(2): 410-414;420. doi: 10.3969/j.issn.1001-3695.2018.02.020

    DUAN D G, GAI X X, HAN Z M, et al. Micro-blog misinformation detection based on gradient boost decision tree[J]. Journal of Computer Applications, 2018, 38(2): 410-414;420. doi: 10.3969/j.issn.1001-3695.2018.02.020
    [14]
    CHENG J, CHEN X H. Travel time prediction model of freeway based on gradient boosting decision tree[J]. Journal of Southeast University(English Edition), 2019, 35(3): 393-398.
    [15]
    DENG S K, WANG C G, WANG M Y, et al. A gradient boosting decision tree approach for insider trading identification: an empirical model evaluation of China stock market[J]. Applied Soft Computing Journal, 2019, 83: 105652-105677. doi: 10.1016/j.asoc.2019.105652
    [16]
    STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal Global Optimization, 1997, 11(4): 341-359. doi: 10.1023/A:1008202821328
    [17]
    丁青锋, 尹晓宇. 差分进化算法综述[J]. 智能系统学报, 2017, 12(4): 431-442.

    DING Q F, YIN X Y. Research survey of differential evolution algorithms[J]. CAAI Transactions on Intelligent Systems, 2017, 12(4): 431-442.
    [18]
    汪慎文, 丁立新, 张文生, 等. 差分进化算法研究进展[J]. 武汉大学学报(理学版), 2014, 60(4): 283-292.

    WANG S W, DING L X, ZHANG W S, et al. Survey of differential evolution[J]. Journal of Wuhan University(Natural Science Edition), 2014, 60(4): 283-292.

Catalog

    Article views (344) PDF downloads (70) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return