Citation: | PI Lixiang, CUI Guimei. Optimizing GBDT's Strip Coiling Temperature Prediction with the Evolutionary Algorithm[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 122-127. DOI: 10.6054/j.jscnun.2022017 |
[1] |
谭明皓, 柴天佑. 基于案例推理的层流冷却过程建模[J]. 控制理论与应用, 2005(2): 248-253;260. doi: 10.3969/j.issn.1000-8152.2005.02.015
TAN M H, CAI T Y. Modeling of the laminar cooling process with case_based reasoning[J]. Control Theory & Applications, 2005(2): 248-253;260. doi: 10.3969/j.issn.1000-8152.2005.02.015
|
[2] |
李振垒, 胡啸, 李海军, 等. 热轧带钢超快冷模型及自适应控制系统的研究和开发[J]. 钢铁, 2013, 48(2): 44-48. doi: 10.3969/j.issn.1672-4224.2013.02.013
LI Z L, HU X, LI H J, et al. Study and development of ultra-fast cooling model and self-adaptive control system of hot strip rolling[J]. Iron and Steel, 2013, 48(2): 44-48. doi: 10.3969/j.issn.1672-4224.2013.02.013
|
[3] |
孙铁军, 杨卫东, 程艳明, 等. 用改进遗传算法优化的带钢卷取温度预报模型[J]. 控制理论与应用, 2015, 32(8): 1106-1113.
SUN T J, YANG W D, CHENG Y M, et al. Improved genetic algorithm for optimizing prediction model of strip coiling temperature[J]. Control Theory & Applications, 2015, 32(8): 1106-1113.
|
[4] |
马丽坤, 韩斌, 王君, 等. 基于BP神经网络的热轧带钢卷取温度预报[J]. 钢铁研究学报, 2006(11): 27-30. doi: 10.3321/j.issn:1001-0963.2006.11.007
MA L K, HAN B, WANG J, et al. Prediction of coiling temperature of hot rolled strip based on BP Neural Networks[J]. Journal of Iron and Steel Research, 2006(11): 27-30. doi: 10.3321/j.issn:1001-0963.2006.11.007
|
[5] |
石孝武, 申群太. 带钢卷取温度高精度预报的遗传神经网络方法[J]. 计算机工程与应用, 2008(16): 225-227;235. doi: 10.3778/j.issn.1002-8331.2008.16.069
SHI X W, SHEN Q T. Genetic neural network method for high-accuracy prediction of coiling temperature of hot rolled strip[J]. Computer Engineering and Applications, 2008(16): 225-227;235. doi: 10.3778/j.issn.1002-8331.2008.16.069
|
[6] |
郭强, 张超, 莫天生. 人工鱼群神经网络在热连轧卷取温度预报中的应用[J]. 科技导报, 2010, 28(1): 74-77.
GUO Q, ZHANG C, MO T S. Application of artificial fish-swarm neural network in coiling temperature forecasting of hot rolled strip[J]. Science & Technology Review, 2010, 28(1): 74-77.
|
[7] |
徐继伟, 杨云. 集成学习方法: 研究综述[J]. 云南大学学报(自然科学版), 2018, 40(6): 1082-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ201806004.htm
XU J W, YANG Y. A survey of ensemble learning approaches[J]. Journal of Yunnan University(Natural Science Edition), 2018, 40(6): 1082-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ201806004.htm
|
[8] |
王伟, 匡祯辉, 谢少捷, 等. 热镀锌钢卷力学性能GBDT预报模型[J]. 福州大学学报(自然科学版), 2020, 48(5): 602-609. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ202005010.htm
WANG W, KUANG Z H, XIE S J, et al. Research on GBDT prediction model of mechanical properties of hot dip galvanized steel coils[J]. Journal of Fuzhou University(Natural Science Edition), 2020, 48(5): 602-609. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ202005010.htm
|
[9] |
谷云东, 马冬芬, 程红超. 基于相似数据选取和改进梯度提升决策树的电力负荷预测[J]. 电力系统及其自动化学报, 2019, 31(5): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZD201905012.htm
GU Y D, MA D F, CHEN H C. Power load forecasting based on similar-data selection and improved gradient boosting decision tree[J]. Proceedings of the CSU-EPSA, 2019, 31(5): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZD201905012.htm
|
[10] |
FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232. doi: 10.1214/aos/1013203450
|
[11] |
CORTES C, VAPNIK V N. Support vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
|
[12] |
ZHANG Q H, BENVENISTE. A wavelet network[J]. IEEE Traps on Neuralnetworks, 1992, 3(6): 889-898.
|
[13] |
段大高, 盖新新, 韩忠明, 等. 基于梯度提升决策树的微博虚假消息检测[J]. 计算机应用, 2018, 38(2): 410-414;420. doi: 10.3969/j.issn.1001-3695.2018.02.020
DUAN D G, GAI X X, HAN Z M, et al. Micro-blog misinformation detection based on gradient boost decision tree[J]. Journal of Computer Applications, 2018, 38(2): 410-414;420. doi: 10.3969/j.issn.1001-3695.2018.02.020
|
[14] |
CHENG J, CHEN X H. Travel time prediction model of freeway based on gradient boosting decision tree[J]. Journal of Southeast University(English Edition), 2019, 35(3): 393-398.
|
[15] |
DENG S K, WANG C G, WANG M Y, et al. A gradient boosting decision tree approach for insider trading identification: an empirical model evaluation of China stock market[J]. Applied Soft Computing Journal, 2019, 83: 105652-105677. doi: 10.1016/j.asoc.2019.105652
|
[16] |
STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal Global Optimization, 1997, 11(4): 341-359. doi: 10.1023/A:1008202821328
|
[17] |
丁青锋, 尹晓宇. 差分进化算法综述[J]. 智能系统学报, 2017, 12(4): 431-442.
DING Q F, YIN X Y. Research survey of differential evolution algorithms[J]. CAAI Transactions on Intelligent Systems, 2017, 12(4): 431-442.
|
[18] |
汪慎文, 丁立新, 张文生, 等. 差分进化算法研究进展[J]. 武汉大学学报(理学版), 2014, 60(4): 283-292.
WANG S W, DING L X, ZHANG W S, et al. Survey of differential evolution[J]. Journal of Wuhan University(Natural Science Edition), 2014, 60(4): 283-292.
|