• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LUO Kaiqing, DENG Juncan, CAI Weibo, ZHOU Yubin, ZHANG Jian. Line Segment Extraction Algorithm Optimization Based on Shi-Tomasi Corner Detector[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 113-121. DOI: 10.6054/j.jscnun.2022016
Citation: LUO Kaiqing, DENG Juncan, CAI Weibo, ZHOU Yubin, ZHANG Jian. Line Segment Extraction Algorithm Optimization Based on Shi-Tomasi Corner Detector[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 113-121. DOI: 10.6054/j.jscnun.2022016

Line Segment Extraction Algorithm Optimization Based on Shi-Tomasi Corner Detector

More Information
  • Received Date: June 11, 2021
  • Available Online: March 13, 2022
  • The existing line segment extraction algorithm extracts many meaningless lines from blurred areas such as the sky, shadow, glass and floor in the image. To solve this problem, a method for line segment extraction algorithm optimization based on Shi-Tomasi corner detector is proposed, which is called ST-Lines. It firstly uses a classic line segment extraction algorithm to extract lines. Then corners are extracted with the Shi-Tomasi corner detector and non-maximum suppression is applied to them with a sliding window. Finally, it verifies the meaning of each line segment and removes as many meaningless line segments as possible to optimize the line segment extraction algorithm based on the length of the line segment, the distribution of corners in the circle region of endpoints, and the K-nearest neighbor algorithm. The YorkUrban line segment dataset is used to compare ST-Lines algorithm and the original algorithm. The experimental results show that ST-Lines algorithm can improve the accuracy, F-score and the averageline length and reduce the average line number.
  • [1]
    ETEMADI A. Robust segmentation of edge data[C]//Proceedings of the 1992 International Conference on Image Processing and its Applications. Maastricht, Netherlands: IET, 1992: 311-314.
    [2]
    TOPAL C, AKINLAR C. Edge drawing: a combined real-time edge and segment detector[J]. Journal of Visual Communication and Image Representation, 2012, 23(6): 862-872. doi: 10.1016/j.jvcir.2012.05.004
    [3]
    AKINLAR C, TOPAL C. EDLines: a real-time line segment detector with a false detection control[J]. Pattern Recognition Letters, 2011, 32(13): 1633-1642. doi: 10.1016/j.patrec.2011.06.001
    [4]
    BURNS J B, HANSON A R, RISEMAN E M. Extracting straight lines[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(4): 425-455.
    [5]
    GROMPONE VON GIOI R, JAKUBOWICZ J, MOREL J, et al. LSD: a fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 32(4): 722-732. http://www.researchgate.net/profile/Gregory_Randall/publication/41910459_LSD_A_Fast_Line_Segment_Detector_with_a_False_Detection_Control/links/559561e208ae21086d20657c.pdf
    [6]
    DESOLNEUX A, MOISAN L, MOREL J M. Meaningful alignments[J]. International Journal of Computer Vision, 2000, 40(1): 7-23. doi: 10.1023/A:1026593302236
    [7]
    HAMID N, KHAN N. LSM: perceptually accurate line segment merging[J]. Journal of Electronic Imaging, 2016, 25(6): 061620/1-11.
    [8]
    SUÁREZ I, MUOZ E, BUENAPOSADA J M, et al. FSG: a statistical approach to line detection via fast segments grouping[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain: IEEE, 2018: 97-102.
    [9]
    SALAUN Y, MARLET R, MONASSE P. Multiscale line segment detector for robust and accurate SfM[C]//Proceedings of the 23rd International Conference on Pattern Recognition. Cancun, Mexico: IEEE, 2017: 2000-2005.
    [10]
    CHO N G, YUILLE A, LEE S W. A novel linelet-based representation for line segment detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 40(5): 1195-1208.
    [11]
    LIU C, ABERGEL R, GOUSSEAU Y, et al. LSDSAR, a Markovian a contrario framework for line segment detection in SAR images[J]. Pattern Recognition, 2020, 98: 107034/1-13.
    [12]
    LI H, YU H, YANG W, et al. ULSD: unified line segment detection across pinhole, fisheye, and spherical cameras[J]. ISPRS Journal of Photogrammetry and Remote Sen-sing, 2021, 178: 187-202. doi: 10.1016/j.isprsjprs.2021.06.004
    [13]
    XUE N, BAI S, WANG F, et al. Learning attraction field representation for robust line segment detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2020: 1595-1603.
    [14]
    XUE N, BAI S, WANG F D, et al. Learning regional attra-ction for line segment detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(6): 1998-2013. doi: 10.1109/TPAMI.2019.2958642
    [15]
    MORAVEC H P. Techniques towards automatic visual obstacle avoidance[C]//Proceedings of the 1977 International Joint Conference on Artificial Intelligence. Tokyo, Japan: IJCAI, 1977: 584-584.
    [16]
    HARRIS C, STEPHENS M. A combined comer and edge detector[C]//Proceedings of the 4th Alvey Vision Conference. Manchester: University of Sheffield Printing Unit, 1988: 147-151.
    [17]
    SHI J, TOMASI C. Good features to track[C]//Procee-dings of the 1994 IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 1994: 593-600.
    [18]
    SMITH S M, BRADY J M. SUSAN-A new approach to low-level image processing[J]. International Journal of Computer Vision, 1997, 23(1): 45-78. doi: 10.1023/A:1007963824710
    [19]
    ROSTEN E, DRUMMOND T. Machine learning for high-speed corner detection[C]//Proceedings of the 8th European Conference on Computer Vision. Berlin: Springer, 2006: 430-443.
    [20]
    ROSTEN E, PORTER R, DRUMMOND T. Faster and be-tter: a machine learning approach to corner detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010, 32(1): 105-119.
    [21]
    DENIS P, ELDER J H, ESTRADA F J. Efficient edge-based methods for estimating manhattan frames in urban imagery[C]//Proceedings of the 10th European Confe-rence on Computer Vision: Part Ⅱ. Berlin: Springer, 2008: 197-210.
  • Cited by

    Periodical cited type(2)

    1. 郭贺媛熙,李利军,冯军,林鑫,李睿. 基于DNA杂交指示剂和银纳米棒阵列芯片构建氯霉素SERS适配体传感器的研究. 光谱学与光谱分析. 2023(11): 3445-3451 .
    2. 赵倩雯,李南希,陈琳琳,李红. 亚甲基蓝介导抗坏血酸氧化动力学的研究. 华南师范大学学报(自然科学版). 2018(06): 25-30 .

    Other cited types(0)

Catalog

    Article views (723) PDF downloads (133) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return