Citation: | WANG Qin, YANG Chao, CHANG Jingzhi, CHENG Yinwan, YAO Bing. Neighbor Full Sum Distinguishing Total Coloring of Square Graphs[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 107-112. DOI: 10.6054/j.jscnun.2022015 |
[1] |
KAROŃSKI M, ŁUCZAK T, THOMASON A. Edge weig-hts and vertex colours[J]. Journal of Combinatorial Theory: Series B, 2004, 91: 151-157. doi: 10.1016/j.jctb.2003.12.001
|
[2] |
ADDARIO-BERRY L, DALAL K, MCDIARMID C, et al. Vertex-colouring edge-weightings[J]. Combinatorica, 2007, 27: 1-12. doi: 10.1007/s00493-007-0041-6
|
[3] |
ADDARIO-BERRY L, DALAL K, REED B A, et al. Degree constrained subgraphs[J]. Discrete Applied Mathematics, 2008, 156: 1168-1174. doi: 10.1016/j.dam.2007.05.059
|
[4] |
WANG T, YU Q. On vertex-coloring 13-edge-weighting[J]. Frontiers of Mathematics in China, 2008, 3: 581-587. doi: 10.1007/s11464-008-0041-x
|
[5] |
KAROŃSKI M, PFENDER F. Vertex-coloring edge weigh-tings: towards the 1-2-3-conjecture[J]. Journal of Combinatorial Theory: Series B, 2010, 100: 347-349. doi: 10.1016/j.jctb.2009.06.002
|
[6] |
PRZYBYŁO J. The 1-2-3 conjecture almost holds for regular graphs[J]. Journal of Combinatorial Theory: Series B, 2021, 147: 183-200. doi: 10.1016/j.jctb.2020.03.005
|
[7] |
PRZYBYŁO J, PRZYBYŹO M. On a 1, 2 conjecture[J]. Discrete Mathematics and Theoretical Computer Science, 2010, 12(1): 101-108.
|
[8] |
KAROŃSKI M. A note on the 1, 2-conjecture[D]. Poznan: Adam Mickiewicz University, 2010.
|
[9] |
LUIZ A G, CAMPOS C N, DANTAS S, et al. The 1, 2-conjecture for powers of cycles[J]. Electronic Notes in Discrete Mathematics, 2015, 50: 83-88. doi: 10.1016/j.endm.2015.07.015
|
[10] |
CRANSTON D W, JAHANBEKAM S, WEST D B. 1, 2, 3-conjecture and 1, 2-conjecture for sparse graphs[J]. Discussiones Mathematicae Graph Theory, 2014, 34(4): 769-799. doi: 10.7151/dmgt.1768
|
[11] |
FLANDRIN E, LI H, MARCZYK A, et al. A note on neighbor expanded sum distinguishing index[J]. Discussiones Mathematicae Graph Theory, 2017, 37(1): 29-37. doi: 10.7151/dmgt.1909
|
[12] |
张辉, 李泽鹏, 陈祥恩. 仙人掌图的邻点被扩展和可区别全染色[J]. 高校应用数学学报, 2019, 34(3): 373-378.
ZHANG H, LI Z P, CHEN X E. The neighbor expanded sum distinguishing total colorings of cactus graphs[J]. Applied Mathematics A Journal of Chinese Universities, 2019, 34(3): 373-378.
|
[13] |
BONDY J A, MURTY U S R. Graph theory with applications[M]. London: The MaCmillan Press Ltd, 1976.
|
[14] |
WEGNER G. Graphs with given diameter and coloring problem[R]. Dortmund: University of Dortmund, 1977.
|