• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WANG Qin, YANG Chao, CHANG Jingzhi, CHENG Yinwan, YAO Bing. Neighbor Full Sum Distinguishing Total Coloring of Square Graphs[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 107-112. DOI: 10.6054/j.jscnun.2022015
Citation: WANG Qin, YANG Chao, CHANG Jingzhi, CHENG Yinwan, YAO Bing. Neighbor Full Sum Distinguishing Total Coloring of Square Graphs[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 107-112. DOI: 10.6054/j.jscnun.2022015

Neighbor Full Sum Distinguishing Total Coloring of Square Graphs

More Information
  • Received Date: April 23, 2021
  • Available Online: March 13, 2022
  • To further study the problem of the neighbor full sum distinguishing non-proper total coloring of the square graphs, the structural of square graphs are used for constructing paths, cycles, caterpillars, generalized stars and trees with maximum degree 3 and having no vertex of degree 2. And the neighbor full sum distinguishing total chromatic improper number of the above five types of square graphs are determined with the combinatorial analysis.
  • [1]
    KAROŃSKI M, ŁUCZAK T, THOMASON A. Edge weig-hts and vertex colours[J]. Journal of Combinatorial Theory: Series B, 2004, 91: 151-157. doi: 10.1016/j.jctb.2003.12.001
    [2]
    ADDARIO-BERRY L, DALAL K, MCDIARMID C, et al. Vertex-colouring edge-weightings[J]. Combinatorica, 2007, 27: 1-12. doi: 10.1007/s00493-007-0041-6
    [3]
    ADDARIO-BERRY L, DALAL K, REED B A, et al. Degree constrained subgraphs[J]. Discrete Applied Mathematics, 2008, 156: 1168-1174. doi: 10.1016/j.dam.2007.05.059
    [4]
    WANG T, YU Q. On vertex-coloring 13-edge-weighting[J]. Frontiers of Mathematics in China, 2008, 3: 581-587. doi: 10.1007/s11464-008-0041-x
    [5]
    KAROŃSKI M, PFENDER F. Vertex-coloring edge weigh-tings: towards the 1-2-3-conjecture[J]. Journal of Combinatorial Theory: Series B, 2010, 100: 347-349. doi: 10.1016/j.jctb.2009.06.002
    [6]
    PRZYBYŁO J. The 1-2-3 conjecture almost holds for regular graphs[J]. Journal of Combinatorial Theory: Series B, 2021, 147: 183-200. doi: 10.1016/j.jctb.2020.03.005
    [7]
    PRZYBYŁO J, PRZYBYŹO M. On a 1, 2 conjecture[J]. Discrete Mathematics and Theoretical Computer Science, 2010, 12(1): 101-108.
    [8]
    KAROŃSKI M. A note on the 1, 2-conjecture[D]. Poznan: Adam Mickiewicz University, 2010.
    [9]
    LUIZ A G, CAMPOS C N, DANTAS S, et al. The 1, 2-conjecture for powers of cycles[J]. Electronic Notes in Discrete Mathematics, 2015, 50: 83-88. doi: 10.1016/j.endm.2015.07.015
    [10]
    CRANSTON D W, JAHANBEKAM S, WEST D B. 1, 2, 3-conjecture and 1, 2-conjecture for sparse graphs[J]. Discussiones Mathematicae Graph Theory, 2014, 34(4): 769-799. doi: 10.7151/dmgt.1768
    [11]
    FLANDRIN E, LI H, MARCZYK A, et al. A note on neighbor expanded sum distinguishing index[J]. Discussiones Mathematicae Graph Theory, 2017, 37(1): 29-37. doi: 10.7151/dmgt.1909
    [12]
    张辉, 李泽鹏, 陈祥恩. 仙人掌图的邻点被扩展和可区别全染色[J]. 高校应用数学学报, 2019, 34(3): 373-378.

    ZHANG H, LI Z P, CHEN X E. The neighbor expanded sum distinguishing total colorings of cactus graphs[J]. Applied Mathematics A Journal of Chinese Universities, 2019, 34(3): 373-378.
    [13]
    BONDY J A, MURTY U S R. Graph theory with applications[M]. London: The MaCmillan Press Ltd, 1976.
    [14]
    WEGNER G. Graphs with given diameter and coloring problem[R]. Dortmund: University of Dortmund, 1977.

Catalog

    Article views (387) PDF downloads (63) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return