• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHONG Zhiheng, MO Yeqiang, ZHANG Kai, LIN Zhiyao, JIANG Manxuan, HUANG Xue'er, ZHOU Haijun. The Steel Corrosion Mechanism and Corrosion Rate Control in Concrete[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 48-53. DOI: 10.6054/j.jscnun.2022008
Citation: ZHONG Zhiheng, MO Yeqiang, ZHANG Kai, LIN Zhiyao, JIANG Manxuan, HUANG Xue'er, ZHOU Haijun. The Steel Corrosion Mechanism and Corrosion Rate Control in Concrete[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 48-53. DOI: 10.6054/j.jscnun.2022008

The Steel Corrosion Mechanism and Corrosion Rate Control in Concrete

More Information
  • Received Date: May 31, 2021
  • Available Online: March 13, 2022
  • The corrosion control mechanism and corrosion rate calculation method of rebar in concrete exposed to different test conditions were studied using polarization curve and electrochemical impedance spectroscopy. The results show that, under natural corrosion condition, the corrosion reaction process of rebar was controlled by the anodic reaction. The corrosion rate can be effectively calculated utilizing a modificative equation used to calculate the bidirectional linear polarization resistance. However, under accelerated corrosion condition, the corrosion reaction process of rebar was controlled by combined mechanism of electrochemical and concentration polarization. The polarization resistance with a relatively high accuracy can be obtained by fitting the weak polarization curve. The research results provide a reference for the judgment of corrosion mechanism and the control of corrosion rate of steel reinforcement in concrete structures.
  • [1]
    MARTINEZ-ECHEVARRIA M J, LOPEZ-ALONSO M, CANTERO ROMERO D, et al. Influence of the previous state of corrosion of rebars in predicting the service life of reinforced concrete structures[J]. Construction and Building Materials, 2018, 188: 915-923. doi: 10.1016/j.conbuildmat.2018.08.173
    [2]
    SOSDEAN C, MARSAVINA L, de SCHUTTER G. Damage of reinforced concrete structures due to steel corrosion[J]. Advanced Materials Research, 2015, 1111: 187-192. doi: 10.4028/www.scientific.net/AMR.1111.187
    [3]
    ZHOU H J, LU J L, XU X, et al. Effects of stirrup corrosion on bond-slip performance of reinforcing steel in concrete: an experimental study[J]. Construction and Building Materials, 2015, 93: 257-266. doi: 10.1016/j.conbuildmat.2015.05.122
    [4]
    YU B, LIU J B, CHEN Z. Probabilistic evaluation method for corrosion risk of steel reinforcement based on concrete resistivity[J]. Construction and Building Materials, 2017, 138: 101-113. doi: 10.1016/j.conbuildmat.2017.01.100
    [5]
    ANDRADE C, GONZÁLEZ J A. Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements[J]. Materials and Corrosion, 1978, 29(8): 515-519. doi: 10.1002/maco.19780290804
    [6]
    OLDHAM K B, MANSFELD F. Corrosion rates from polarization curves: a new method[J]. Corrosion Science, 1973, 13(10): 813-819. doi: 10.1016/S0010-938X(73)80021-6
    [7]
    WALTER G W. Problems arising in the determination of accurate corrosion rates from polarization resistance measurements[J]. Corrosion Science, 1977, 17(12): 983-993. doi: 10.1016/S0010-938X(77)80013-9
    [8]
    BIRD D W. The effect of anodic or cathodic control on linear polarization in non-ideal situations[J]. Corrosion Science, 1973, 13(11): 913-915. doi: 10.1016/S0010-938X(73)80073-3
    [9]
    曹楚南. 线性极化电阻的理论误差及其纠正方法[J]. 中国腐蚀与防护学报, 1981, 1(2): 1-13.

    CAO C N. On the theoretical errors of linear polarization techniques[J]. Journal of Chinese Society of Corrosion and Protection, 1981, 1(2): 1-13.
    [10]
    EL-FEKI A A, WALTER G W. Corrosion rate measurements under conditions of mixed charge transfer plus diffusion control including the cathodic metal ion deposition partial reaction[J]. Corrosion Science, 2000, 42(6): 1055-1070. doi: 10.1016/S0010-938X(99)00120-1
    [11]
    姬永生, 王志龙, 徐从宇, 等. 混凝土中钢筋腐蚀过程的极化曲线分析[J]. 浙江大学学报(工学版), 2012, 46(8): 1457-1464.

    JI Y S, WANG Z L, XU C Y, et al. Study on polarization curve diagrams of steel corrosion in concrete[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(8): 1457-1464.
    [12]
    赵永韬, 郭兴蓬. 混合控制下腐蚀过程的电化学动力学参数测定[J]. 物理化学学报, 2006, 22(10): 1281-1286. doi: 10.3866/PKU.WHXB20061021

    ZHAO Y T, GUO X P. Determination of electrochemical kinetic parameters in a mixture controlled corrosion system[J]. Acta Physico-Chimica Sinica, 2006, 22(10): 1281-1286. doi: 10.3866/PKU.WHXB20061021
    [13]
    STERN M, GEARY A L. Electrochemical polarization I. A theoretical analysis of the shape of polarization curves[J]. Journal of the Electrochemical Society, 1957, 104: 56-63. doi: 10.1149/1.2428496
    [14]
    陈小平, 王向东, 李玉素, 等. 氯离子环境下混凝土钢筋的锈蚀过程[J]. 腐蚀与防护, 2011, 32(3): 190-192, 196.

    CHEN X P, WANG X D, LI Y S, et al. Effect of Cl- on corrosion process of rebar in concrete[J]. Corrosion and Protection, 2011, 32(3): 190-192, 196.
    [15]
    张倩倩, 孙伟, 刘加平. 混凝土模拟液中临界氯离子浓度影响因素分析[J]. 东南大学学报(自然科学版), 2010, 40(S2): 177-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2010S2032.htm

    ZHANG Q Q, SUN W, LIU J P. Analysis of some factors affecting chloride threshold level in simulated concrete pore solution[J]. Journal of Southeast University (Natural Science Edition), 2010, 40(S2): 177-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2010S2032.htm
    [16]
    刘晓敏, 史志明, 许刚, 等. 钢筋在混凝土中腐蚀行为的电化学阻抗特征[J]. 腐蚀科学与防护技术, 1999, 11(3): 161-164. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ903.006.htm

    LIU X M, SHI Z M, XU G, et al. EIS characteristics of corrosion behavior of rebar in concrete[J]. Corrosion Science and Protection Technology, 1999, 11(3): 161-164. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ903.006.htm
    [17]
    李伟善, 蔡松琦. Fe/硼酸盐缓冲溶液界面性质的交流阻抗研究[J]. 华南师范大学学报(自然科学版), 2003(3): 80-89. http://journal-n.scnu.edu.cn/article/id/1049

    LI W S, CAI S Q. Electrochemical impedance of interface performances of iron/borate buffer solution[J]. Journal of South China Normal University (Natural Science Edition), 2003(3): 80-89. http://journal-n.scnu.edu.cn/article/id/1049
  • Cited by

    Periodical cited type(5)

    1. 李若茜,吴正仲. 基于扎根理论的视疲劳检测游戏设计策略研究. 美与时代(上). 2025(02): 116-119 .
    2. 谢禹. 穿村公路路段限速标志设置有效性探究. 中国公路. 2025(03): 109-111 .
    3. 王海晓,丁旭,郭敏,吕贞. 基于视觉信息加工的草原公路行车安全性分析. 重庆交通大学学报(自然科学版). 2024(02): 65-74 .
    4. 李晓雷,谭翔峻,詹银霞. 团雾环境驾驶人最低注意力需求研究综述. 科学技术与工程. 2024(13): 5259-5270 .
    5. 胡汇. 山区公路弯道会车过程驾驶人心生理及行为耦合特性分析. 科技和产业. 2023(15): 169-174 .

    Other cited types(12)

Catalog

    Article views (642) PDF downloads (135) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return