Citation: | ZHUANG Qiangqiang, WAN Baofeng, WU Baozhu, WANG Haoli, WU Xikai. A Bimetallic Oxide ZnMnO3 as a High-performance Long-cycle Cathode for Zinc Ion Batteries[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 30-35. DOI: 10.6054/j.jscnun.2022005 |
[1] |
谭春林, 周豪杰, 许梦清, 等. 铋修饰LiMn2O4锂离子电池正极材料研究[J]. 华南师范大学学报(自然科学版), 2013, 45(4): 100-103. http://journal-n.scnu.edu.cn/article/id/3186
TAN C L, ZHOU H J, XU M Q, et al. Study on bismuth modified LiMn2O4 as cathode of lithium ion battery[J]. Journal of South China Normal University (Natural Science Edition), 2013, 45(4): 100-103. http://journal-n.scnu.edu.cn/article/id/3186
|
[2] |
赖海, 林颖, 陈希, 等. 纳米SnOx的水热合成及其储锂电化学性能[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 21-28. doi: 10.6054/j.jscnun.2021022
LAI H, LIN Y, CHEN X, et al. Hydrothermal synthesis of nano-SnOx and its electrochemical performance for lithium-ions Storage[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 21-28. doi: 10.6054/j.jscnun.2021022
|
[3] |
XU C, LI B, DU H, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery[J]. Angewandte Chemie International Edition, 2012, 51(4): 33-35.
|
[4] |
SELVAKUMARAN D, PAN A, LIANG S, et al. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(31): 18209-18236. doi: 10.1039/C9TA05053A
|
[5] |
XU D M, WANG H W, LI F Y, et al. Conformal conducting polymer shells on V2O5 nano-sheet arrays as a high-rate and stable zinc-ion battery cathode[J]. Advanced Materials Interfaces, 2019, 6(2): 1801506/1-8.
|
[6] |
ZHU C, FANG G, ZHOU J, et al. Binder-free stainless steel@Mn3O4 nano-flower composite: a high-activity aqueous zinc ion battery cathode with high-capacity and long-cycle-life[J]. Journal of Materials Chemistry A, 2018, 6(20): 9677-9683. doi: 10.1039/C8TA01198B
|
[7] |
CHEN L, BAO J L, DONG X, et al. Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode[J]. ACS Energy Letters, 2017, 2(5): 1115-1121. doi: 10.1021/acsenergylett.7b00040
|
[8] |
ZHANG D D, CAO J, ZHANG X Y, et al. Inhibition of manganese dissolution in Mn2O3 cathode with controllable Ni2+ incorporation for high-performance zinc ion battery[J]. Advanced Functional Materials, 2021, 31(14): 2009412/1-9.
|
[9] |
TANG F, GAO J, RUAN Q, et al. Graphene-wrapped MnO/ C composites by MOFs-derived as cathode material for aqueous zinc ion batteries[J]. Electrochimica Acta, 2020, 353: 136570/1-9.
|
[10] |
GUO C, LIU H, LI J, et al. Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery[J]. Electrochimica Acta, 2019, 304: 370-377. doi: 10.1016/j.electacta.2019.03.008
|
[11] |
SAIFUL I, MUHAMMAD H A, VINOD M, et al. Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(44): 23299-23309. doi: 10.1039/C7TA07170A
|
[12] |
JIANG B Z, XU C J, WU C L, et al. Manganese sesquio-xide as cathode material for multivalent zinc ion battery with high capacity and long cycle life[J]. Electrochimica Acta, 2017, 229: 422-428. doi: 10.1016/j.electacta.2017.01.163
|
[13] |
HAO J, JIAN M, ZHANG J, et al. Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery[J]. Electrochimica Acta, 2017, 259: 170-178.
|
[14] |
CHEN L, YANG Z, QIN H, et al. Graphene-wrapped hollow ZnMn2O4 microspheres for high-performance cathode materials of aqueous zinc ion batteries[J]. Electrochimica Acta, 2019, 317: 155-163. doi: 10.1016/j.electacta.2019.05.147
|
[15] |
CHEN H, DING L X, XIAO K, et al. Highly ordered ZnMnO3 nanotube arrays from a "self-sacrificial" ZnO template as high-performance electrodes for lithium ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(42): 18-23.
|
[16] |
CHEN L, YANG Z, QIN H, et al. Advanced electrochemical performance of ZnMn2O4/N-doped graphene hybrid as cathode material for zinc ion battery[J]. Journal of Power Sources, 2019, 425: 162-169. doi: 10.1016/j.jpowsour.2019.04.010
|
[17] |
GAO Y N, YANG H Y, BAI Y, et al Mn-based oxides for aqueous rechargeable metal ion batteries[J]. Journal of Materials Chemistry A, 2021, 9: 11472-11500. doi: 10.1039/D1TA01951A
|
[18] |
LIU S, ZHU H, ZHANG B, et al. Tuning the kinetics of zinc ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc ion storage performance[J]. Advanced Materials, 2020, 32(26): 2001113/1-10.
|
[19] |
LIU J L, WANG J, XU C H, et al. Advanced energy storage devices: basic principles, analytical methods, and rational materials design[J]. Advanced Science, 2018, 5(1): 1700322/1-19.
|
1. |
尹玉,姜懿珊,陈昕,陈杰. pH荧光分子探针与人血清白蛋白之间相互作用的研究. 广州化工. 2024(09): 86-88 .
![]() |