• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHUANG Qiangqiang, WAN Baofeng, WU Baozhu, WANG Haoli, WU Xikai. A Bimetallic Oxide ZnMnO3 as a High-performance Long-cycle Cathode for Zinc Ion Batteries[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 30-35. DOI: 10.6054/j.jscnun.2022005
Citation: ZHUANG Qiangqiang, WAN Baofeng, WU Baozhu, WANG Haoli, WU Xikai. A Bimetallic Oxide ZnMnO3 as a High-performance Long-cycle Cathode for Zinc Ion Batteries[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 30-35. DOI: 10.6054/j.jscnun.2022005

A Bimetallic Oxide ZnMnO3 as a High-performance Long-cycle Cathode for Zinc Ion Batteries

More Information
  • Received Date: June 03, 2021
  • Available Online: March 13, 2022
  • A bimetallic oxide (ZnMnO3) is synthesized with the sol-gel method and used as the cathode for zinc ion batteries for the first time. Electrochemical tests show that the ZnMnO3 exhibits a high specific discharge capacity (175 mA·h/g at 300 mA/g). At a current density of 1 000 mA/g, the specific discharge capacity is still 134 mA ·h/g. Compared with monometallic oxides, the material exhibits more excellent cycling stability and better rate performance. The ex-situ scanning electron microscope (SEM) characterization of the electrode surface morphology shows that the morphology of ZnMnO3 can be well maintained during the cycling process so that it can have stable long-cycle performance. According to the results of ex-situ X-ray diffraction (XRD) analysis, the zinc storage mechanism of ZnMnO3 is the insertion and extraction reaction.
  • [1]
    谭春林, 周豪杰, 许梦清, 等. 铋修饰LiMn2O4锂离子电池正极材料研究[J]. 华南师范大学学报(自然科学版), 2013, 45(4): 100-103. http://journal-n.scnu.edu.cn/article/id/3186

    TAN C L, ZHOU H J, XU M Q, et al. Study on bismuth modified LiMn2O4 as cathode of lithium ion battery[J]. Journal of South China Normal University (Natural Science Edition), 2013, 45(4): 100-103. http://journal-n.scnu.edu.cn/article/id/3186
    [2]
    赖海, 林颖, 陈希, 等. 纳米SnOx的水热合成及其储锂电化学性能[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 21-28. doi: 10.6054/j.jscnun.2021022

    LAI H, LIN Y, CHEN X, et al. Hydrothermal synthesis of nano-SnOx and its electrochemical performance for lithium-ions Storage[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 21-28. doi: 10.6054/j.jscnun.2021022
    [3]
    XU C, LI B, DU H, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery[J]. Angewandte Chemie International Edition, 2012, 51(4): 33-35.
    [4]
    SELVAKUMARAN D, PAN A, LIANG S, et al. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(31): 18209-18236. doi: 10.1039/C9TA05053A
    [5]
    XU D M, WANG H W, LI F Y, et al. Conformal conducting polymer shells on V2O5 nano-sheet arrays as a high-rate and stable zinc-ion battery cathode[J]. Advanced Materials Interfaces, 2019, 6(2): 1801506/1-8.
    [6]
    ZHU C, FANG G, ZHOU J, et al. Binder-free stainless steel@Mn3O4 nano-flower composite: a high-activity aqueous zinc ion battery cathode with high-capacity and long-cycle-life[J]. Journal of Materials Chemistry A, 2018, 6(20): 9677-9683. doi: 10.1039/C8TA01198B
    [7]
    CHEN L, BAO J L, DONG X, et al. Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode[J]. ACS Energy Letters, 2017, 2(5): 1115-1121. doi: 10.1021/acsenergylett.7b00040
    [8]
    ZHANG D D, CAO J, ZHANG X Y, et al. Inhibition of manganese dissolution in Mn2O3 cathode with controllable Ni2+ incorporation for high-performance zinc ion battery[J]. Advanced Functional Materials, 2021, 31(14): 2009412/1-9.
    [9]
    TANG F, GAO J, RUAN Q, et al. Graphene-wrapped MnO/ C composites by MOFs-derived as cathode material for aqueous zinc ion batteries[J]. Electrochimica Acta, 2020, 353: 136570/1-9.
    [10]
    GUO C, LIU H, LI J, et al. Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery[J]. Electrochimica Acta, 2019, 304: 370-377. doi: 10.1016/j.electacta.2019.03.008
    [11]
    SAIFUL I, MUHAMMAD H A, VINOD M, et al. Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(44): 23299-23309. doi: 10.1039/C7TA07170A
    [12]
    JIANG B Z, XU C J, WU C L, et al. Manganese sesquio-xide as cathode material for multivalent zinc ion battery with high capacity and long cycle life[J]. Electrochimica Acta, 2017, 229: 422-428. doi: 10.1016/j.electacta.2017.01.163
    [13]
    HAO J, JIAN M, ZHANG J, et al. Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery[J]. Electrochimica Acta, 2017, 259: 170-178.
    [14]
    CHEN L, YANG Z, QIN H, et al. Graphene-wrapped hollow ZnMn2O4 microspheres for high-performance cathode materials of aqueous zinc ion batteries[J]. Electrochimica Acta, 2019, 317: 155-163. doi: 10.1016/j.electacta.2019.05.147
    [15]
    CHEN H, DING L X, XIAO K, et al. Highly ordered ZnMnO3 nanotube arrays from a "self-sacrificial" ZnO template as high-performance electrodes for lithium ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(42): 18-23.
    [16]
    CHEN L, YANG Z, QIN H, et al. Advanced electrochemical performance of ZnMn2O4/N-doped graphene hybrid as cathode material for zinc ion battery[J]. Journal of Power Sources, 2019, 425: 162-169. doi: 10.1016/j.jpowsour.2019.04.010
    [17]
    GAO Y N, YANG H Y, BAI Y, et al Mn-based oxides for aqueous rechargeable metal ion batteries[J]. Journal of Materials Chemistry A, 2021, 9: 11472-11500. doi: 10.1039/D1TA01951A
    [18]
    LIU S, ZHU H, ZHANG B, et al. Tuning the kinetics of zinc ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc ion storage performance[J]. Advanced Materials, 2020, 32(26): 2001113/1-10.
    [19]
    LIU J L, WANG J, XU C H, et al. Advanced energy storage devices: basic principles, analytical methods, and rational materials design[J]. Advanced Science, 2018, 5(1): 1700322/1-19.
  • Cited by

    Periodical cited type(1)

    1. 尹玉,姜懿珊,陈昕,陈杰. pH荧光分子探针与人血清白蛋白之间相互作用的研究. 广州化工. 2024(09): 86-88 .

    Other cited types(0)

Catalog

    Article views (767) PDF downloads (149) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return