• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WU Qian, PENG Daoling, GU Fenglong. A Theoretical Study on the Nonlinear Optical Properties of Cyclophane and Its Derivatives[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 24-29. DOI: 10.6054/j.jscnun.2022004
Citation: WU Qian, PENG Daoling, GU Fenglong. A Theoretical Study on the Nonlinear Optical Properties of Cyclophane and Its Derivatives[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 24-29. DOI: 10.6054/j.jscnun.2022004

A Theoretical Study on the Nonlinear Optical Properties of Cyclophane and Its Derivatives

More Information
  • Received Date: January 20, 2021
  • Available Online: March 13, 2022
  • The density functional theory-based computational method is used to study the nonlinear optical properties of cyclophane and its derivatives and the possibility of their use for optical switch. According to the calculation results, the new molecules have a structure of inversion center symmetry in the absence of external electrical field applied and their first hyperpolaorizability is zero, corresponding to the "off" state of the optical switch. When the external electrical field is applied, the molecules convert to structures of non-inversion center symmetry and have large first hyperpolaorizabilities, corresponding to the "on" state of the optical switch. When the electric field strength is less than 1.39×1010 V/m, cyclophane and its derivatives exhibit good stability in both geometrical structure and electronic structure. Although there exists a small change of structural parameter for cyclophane derivatives caused by broken symmetry, it does not affect its structural stability. It is proved that cyclophane and its derivatives can be used for making nonlinear optical switch and a theoretical reference for nonlinear optical materiel design is provided.
  • [1]
    MARDER S R. Organic nonlinear optical materials: where we have been and where we are going[J]. Chemical Communications, 2006, 2: 131-134.
    [2]
    LONG N J. Organometallic compounds for nonlinear optics-the search for enlightenment[J]. Angewandte Chemie International Edition, 1995, 34: 21-38. doi: 10.1002/anie.199500211
    [3]
    KUZYK M G. Using fundamental principles to understand and optimize nonlinear-opticalmaterials[J]. Journal of Materials Chemistry, 2009, 19(40): 7444-7465. doi: 10.1039/b907364g
    [4]
    HECK J, DABEK S, MEYER-FRIEDRICHSEN T, et al. Monoand dinuclear sesquifulvalene complexes, organometallic materials with large nonlinear optical properties[J]. Coordination Chemistry Reviews, 1999, 190: 1217-1254.
    [5]
    MARDER S R, BERATAN D N, CHENG L T. Approaches for optimizing the first electronic hyperpolarizability of conjugated organic molecules[J]. Science, 1991, 252: 103-106. doi: 10.1126/science.252.5002.103
    [6]
    ZHANG C, SONG Y, WANG L X. Correlations between molecular structures and third-order non-linear optical functions of heterothiometallic clusters: a comparative study[J]. Coordination Chemistry Reviews, 2007, 251: 111-141. doi: 10.1016/j.ccr.2006.06.007
    [7]
    GREEN K A, CIFUENTES M P, SAMOC M, et al. Metal alkynyl complexes as switchable NLO systems[J]. Coordination Chemistry Reviews, 2011, 255: 2530-2541. doi: 10.1016/j.ccr.2011.02.021
    [8]
    ASSELBERGHS I, CLAYS K, PERSOONS A, et al. Switching of molecular second-order polarisability in solution[J]. Journal of Materials Chemistry, 2004, 14: 2831-2839. doi: 10.1039/b401434k
    [9]
    MA N N, LIU C G, QIU Y Q, et al. Theoretical investigation on redox-switchable second-order nonlinear optical responses of push-pull Cp*CoEt2C2B4H3-expanded (metallo)porphyrins[J]. Journal of Computational Chemi-stry, 2012, 33(2): 211-219. doi: 10.1002/jcc.21966
    [10]
    LIU C G, SU Z M, GUAN X H, et al. Redox and photoisomerization switching the second-order nonlinear optical properties of a tetrathiafulvalene derivative across six states: a DFT study[J]. Molecular Physics, 2011, 112(2): 199-205.
    [11]
    PLAQUET A, GUILLAUME M, CHAMPAGNE B, et al. Investigation on the second-order nonlinear optical responses in the keto-enol equilibrium of anil derivatives[J]. Journal of Physical Chemistry C, 2008, 112(14): 5638-5645. doi: 10.1021/jp711511t
    [12]
    LILJEROTH P, REPP J, MEYER G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules[J]. Science, 2007, 317: 1203-1206. doi: 10.1126/science.1144366
    [13]
    WANG J J, ZHOU Z J, HE H M, et al. An external electric field manipulated second-order nonlinear optical switch of an electride molecule: a long-range electron transfer forms a lone excess electron pair and quenches singlet diradical[J]. Journal of Physical Chemistry C, 2016, 120: 13656-13666. doi: 10.1021/acs.jpcc.6b00745
    [14]
    HOU J H, LIN S, ZHU J, et al. Alkaline-earthide: a new class of excess electron compounds li-c6h6f6-m (m=Be, Mg and Ca) with extremely large nonlinear optical responses[J]. Chemical Physics Letters, 2018, 711: 55-59. doi: 10.1016/j.cplett.2018.09.023
    [15]
    SUCARRAT M T, NAVARRO S, MARCOS E, et al. Design of Hückel-Möbius topological switches with high nonlinear optical properties[J]. The Journal of Physical Chemistry C, 2017, 121(35): 19348-19357. doi: 10.1021/acs.jpcc.7b05900
    [16]
    SAKAMOTO Y, MIYOSHI N, HIRAKIDA M, et al. Syntheses, structures, and transannular π-π interactions of multibridged[3n]cyclophanes1[J]. Journal of the Ameri-can Chemical Society, 1996, 118(49): 12267-12275. doi: 10.1021/ja961944k
    [17]
    ZHAO Y, TRUHLAR D. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theoretical Chemistry Accounts, 2008, 120: 215-241. doi: 10.1007/s00214-007-0310-x
    [18]
    ZHAO Y, TRUHLAR D G. Density functionals with broad applicability in chemistry[J]. Accounts of Chemical Research, 2008, 41(2): 157-167. doi: 10.1021/ar700111a
    [19]
    FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian16 (version B. 01)[CP]. Gaussian. Inc., Wallingford CT, 2016.
  • Cited by

    Periodical cited type(2)

    1. 凌伟军. 废旧三元锂离子电池回收技术研究新进展. 山西化工. 2023(02): 38-40 .
    2. 张继予,蒋梦迪,谢宏泽,吴文荣,唐庆杰. 三元锂电池正极材料的回收利用. 化工技术与开发. 2022(07): 73-76 .

    Other cited types(3)

Catalog

    Article views (434) PDF downloads (81) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return