Citation: | ZHAO Zhaoyang, WANG Guoliang, ZHAI Pengfei, QI Chunbao, CHEN Xudan. A Theoretical Study on the Adsorption Behavior of N2 and O2 on δ-Pu(100) Surface[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 13-23. DOI: 10.6054/j.jscnun.2022003 |
[1] |
SHIM J H, HAULE K, KOTLIAR G. Fluctuating Valence in a correlated solid and the anomalous properties of δ-plutonium[J]. Nature, 2007, 446: 513-516. doi: 10.1038/nature05647
|
[2] |
TOTTLE C R. Plutonium and its alloys[J]. Nature, 1960, 188: 826-827. doi: 10.1038/188826b0
|
[3] |
RAYNOR J B, SACKMAN J F, ESTABLISHMENT A B E. Oxidation of plutonium in moist air and argon[J]. Nature, 1963, 197: 587-588. http://www.nature.com/nature/journal/v197/n4867/pdf/197587c0.pdf
|
[4] |
HASCHKE J M, ALLEN T H, MARTZ J C. Oxidation kinetics of plutonium in air: consequences for environmental dispersal[J]. Journal of Alloys and Compounds, 1998, 271: 211-215. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0925838898000565&originContentFamily=serial&_origin=article&_ts=1475349103&md5=889c7f0fe4eb7d528e15c642d8aea5a8
|
[5] |
WANG J, RAY A K. A full-potential linearized augmented plane wave study of the interaction of CO2 with α-Pu (020) surface nanolayers[J]. Journal of Computational and Theoretical Nanoscience, 2014, 11(7): 1710-1717. doi: 10.1166/jctn.2014.3555
|
[6] |
HUDA M N, RAY A K. Electronic structures and bonding of oxygen on plutonium layers[J]. The European Physical Journal B, 2004, 40(3): 337-346. doi: 10.1140/epjb/e2004-00281-y
|
[7] |
YU H L, TANG T, ZHENG S T, et al. A theoretical study of hydrogen atoms adsorption and diffusion on PuO2 (110) surface[J]. Journal of Alloys and Compounds, 2016, 666: 287-291. doi: 10.1016/j.jallcom.2016.01.095
|
[8] |
HECKER S S. Plutonium-an element never at equilibrium[J]. Metallurgical and Materials Transactions A, 2008, 39(7): 1585-1592. doi: 10.1007/s11661-007-9373-5
|
[9] |
李赣, 赖新春, 孙颖. FLAPW方法研究δ-钚单层表面几何和电子结构[J]. 物理化学学报, 2005, 21(6): 686-689. doi: 10.3866/PKU.WHXB20050622
LI G, LAI X C, SUN Y. An all-electron FLAPW study of geometric and electronic structures for δ-Pu monolayer[J]. Acta Physico-Chimica Sinica, 2005, 21(6): 686-689. doi: 10.3866/PKU.WHXB20050622
|
[10] |
郭继军, 刘国平, 魏洪源. O2在δ-Pu(100)表面吸附行为的第一原理研究[J]. 计算机与应用化学, 2013, 6: 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYH201306008.htm
GUO J J, LIU G P, WEI H Y. A density functional theory study of molecular oxygen adsorption and dissociation on δ-Pu(100) surface[J]. Computers and Applied Chemistry, 2013, 6: 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYH201306008.htm
|
[11] |
HUDA M N, RAY A K. A density functional study of molecular oxygen adsorption and reaction barrier on Pu (100) surface[J]. The European Physical Journal B, 2005, 43(1): 131-141. doi: 10.1140/epjb/e2005-00036-4
|
[12] |
孙博, 刘海风, 宋海峰, 等. 钚表面钝化层抗氢蚀机理的微观动力学模拟[J]. 物理化学学报, 2015, 31(S1): 81-89.
SUN B, LIU H F, SONG H F, et al. Microdynamics simulations of the hydrogen-corrosion resistance of passivation layers on Pu surface[J]. Acta Physico-Chimica Sinica, 2015, 31(S1): 81-89.
|
[13] |
KRESSE G, FURTHMVLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. doi: 10.1103/PhysRevB.54.11169
|
[14] |
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave bethod[J]. Physical Review B, 1999, 59(3): 1758-1775. doi: 10.1103/PhysRevB.59.1758
|
[15] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
|
[16] |
HENKELMAN G, JÓNSSON H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle soints[J]. The Journal of Chemical Physics, 2000, 113(22): 9978-9985. doi: 10.1063/1.1323224
|
[17] |
蒙大桥, 罗文华, 李赣, 等. Pu(100)表面吸附CO2的密度泛函研究[J]. 物理学报, 2009, 58(12): 8224-8229.
MENG D Q, LUO W H, LI G, et al. Density functional study of CO2 adsorption on Pu(100) surface[J]. Acta Physica Sinica, 2009, 58(12): 8224-8229.
|
[18] |
魏洪源, 胡睿, 熊晓玲, 等. H2在δ-Pu(100)表面吸附的第一原理研究[J]. 分子科学学报, 2010, 26(1): 37-41. doi: 10.3969/j.issn.1000-9035.2010.01.006
WEI H Y, HU R, XIONG X L, et al. A first principle theory study of molecular hydrogen adsorption on δ-Pu(100) surface[J]. Journal of Molecular Science, 2010, 26(1): 37-41. doi: 10.3969/j.issn.1000-9035.2010.01.006
|
[19] |
罗文华, 蒙大桥, 李赣, 等. CO在Pu(100)表面吸附的研究[J]. 物理学报, 2008, 57(1): 160-164. doi: 10.3321/j.issn:1000-3290.2008.01.027
LUO W H, MENG D Q, LI G, et al. Density functional study of CO adsorption on Pu (100) surface[J]. Acta Physica Sinica, 2008, 57(1): 160-164. doi: 10.3321/j.issn:1000-3290.2008.01.027
|
[20] |
YU M, TRINKLE D R. Accurate and efficient algorithm for bader exharge integration[J]. The Journal of Chemical Physics, 2011, 134(6): 064111/1-9. doi: 10.1063/1.3553716
|
[21] |
陈秋云, 曹坤, 敖冰云, 等. 稀有气体原子与Pu(100)表面相互作用的第一性原理研究[J]. 原子能科学技术, 2013, 47(11): 1931-1936. doi: 10.7538/yzk.2013.47.11.1931
CHEN Q Y, CAO K, AO B Y, et al. First-principles investigation of adsorption of rare gas atoms on Pu(100) surface[J]. Atomic Energy Science and Technology, 2013, 47(11): 1931-1936. doi: 10.7538/yzk.2013.47.11.1931
|
[22] |
魏洪源, 宋宏涛, 熊晓玲, 等. CO在δ-Pu(100)表面的吸附结构和电子态[J]. 计算机与应用化学, 2009, 48(1): 126-132.
WEI H Y, SONG H T, XIONG X L, et al. Geometric structure and electronic states of CO adsorption on δ-Pu(100)surface[J]. Computer and Applied Chemistry, 2009, 48(1): 126-132.
|
[23] |
张苗, 侯贤华, 王基蕴, 等. Ag在Si表面吸附的第一性原理研究[J]. 华南师范大学学报(自然科学版), 2014, 46(5): 49-53. doi: 10.6054/j.jscnun.2014.06.041
ZHANG M, HOU X H, WANG J Y, et al. First principles study of Ag adsorption on Si surfaces[J]. Journal of South China Normal University (Natural Science Edition), 2014, 46(5): 49-53. doi: 10.6054/j.jscnun.2014.06.041
|
[24] |
刘玉亭, 徐超, 顾凤龙. SnO2 (110)表面In掺杂对NO2气敏吸附性能提升的理论研究[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 16-22. doi: 10.6054/j.jscnun.2021003
LIU Y T, XU C, GU F L. A Theoretical study of the enhancement of NO2 sensing and adsoption on indium-doped SnO2(110) surface[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(1): 16-22. doi: 10.6054/j.jscnun.2021003
|
[25] |
张灿鹏, 邵志刚. CO2和CO分子在五边形石墨烯表面的吸附行为[J]. 华南师范大学学报(自然科学版), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003
ZHANG C P, SHAO Z G. The adsorption behavior of CO2 and CO on penta-graphene[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003
|
[26] |
DERINGER V L, TCHOUGRÉEFF A L, DRONSKOWSKI R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets[J]. The Journal of Physical Chemistry, 2011, 115(21): 5461-5466. http://www.onacademic.com/detail/journal_1000035250016110_010c.html
|
[27] |
NELSON R, ERTURAL C, GEORGE J, et al. LOBSTER: local orbital projections, atomic charges, and chemical-gonding analysis from projector augmented-wave-based gensity-functional theory[J]. Journal of Computational Chemistry, 2020, 41(21): 1931-1940. doi: 10.1002/jcc.26353
|