• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHAO Zhaoyang, WANG Guoliang, ZHAI Pengfei, QI Chunbao, CHEN Xudan. A Theoretical Study on the Adsorption Behavior of N2 and O2 on δ-Pu(100) Surface[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 13-23. DOI: 10.6054/j.jscnun.2022003
Citation: ZHAO Zhaoyang, WANG Guoliang, ZHAI Pengfei, QI Chunbao, CHEN Xudan. A Theoretical Study on the Adsorption Behavior of N2 and O2 on δ-Pu(100) Surface[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 13-23. DOI: 10.6054/j.jscnun.2022003

A Theoretical Study on the Adsorption Behavior of N2 and O2 on δ-Pu(100) Surface

More Information
  • Received Date: June 29, 2021
  • Available Online: March 13, 2022
  • The adsorption behavior of active gases in the air on the surface of Pu-based materials is an important cause of surface corrosion of Pu-based materials. The adsorption behavior of N2 and O2, two main gases in air, on δ-Pu(100) surface is studied using the first principle method. The Bader charge analysis and the adsorption energy and binding energy analysis of all stable adsorption configurations show that the most stable adsorption configuration of N2 molecule is H-S-N6 and the most stable adsorption configuration of O2 molecule is H-P-O4. The results of differential charge density analysis, density of states analysis and COHP calculation show that the adsorption of N2 and O2 on δ-Pu(100) surface is strong chemical adsorption, and the adsorption of O2 is much stronger than that of N2. Furthermore, the bonding essence is that the 2s and 2p orbitals of N atom or O atom overlap with the 6p, 6d and 5f orbitals of Pu atom on the surface. These results can be a good foundation for the study of the co-adsorption behavior of N2 and O2 on δ-Pu(100) surface and are of great significance for revealing the surface corrosion mechanism of plutonium materials in air.
  • [1]
    SHIM J H, HAULE K, KOTLIAR G. Fluctuating Valence in a correlated solid and the anomalous properties of δ-plutonium[J]. Nature, 2007, 446: 513-516. doi: 10.1038/nature05647
    [2]
    TOTTLE C R. Plutonium and its alloys[J]. Nature, 1960, 188: 826-827. doi: 10.1038/188826b0
    [3]
    RAYNOR J B, SACKMAN J F, ESTABLISHMENT A B E. Oxidation of plutonium in moist air and argon[J]. Nature, 1963, 197: 587-588. http://www.nature.com/nature/journal/v197/n4867/pdf/197587c0.pdf
    [4]
    HASCHKE J M, ALLEN T H, MARTZ J C. Oxidation kinetics of plutonium in air: consequences for environmental dispersal[J]. Journal of Alloys and Compounds, 1998, 271: 211-215. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0925838898000565&originContentFamily=serial&_origin=article&_ts=1475349103&md5=889c7f0fe4eb7d528e15c642d8aea5a8
    [5]
    WANG J, RAY A K. A full-potential linearized augmented plane wave study of the interaction of CO2 with α-Pu (020) surface nanolayers[J]. Journal of Computational and Theoretical Nanoscience, 2014, 11(7): 1710-1717. doi: 10.1166/jctn.2014.3555
    [6]
    HUDA M N, RAY A K. Electronic structures and bonding of oxygen on plutonium layers[J]. The European Physical Journal B, 2004, 40(3): 337-346. doi: 10.1140/epjb/e2004-00281-y
    [7]
    YU H L, TANG T, ZHENG S T, et al. A theoretical study of hydrogen atoms adsorption and diffusion on PuO2 (110) surface[J]. Journal of Alloys and Compounds, 2016, 666: 287-291. doi: 10.1016/j.jallcom.2016.01.095
    [8]
    HECKER S S. Plutonium-an element never at equilibrium[J]. Metallurgical and Materials Transactions A, 2008, 39(7): 1585-1592. doi: 10.1007/s11661-007-9373-5
    [9]
    李赣, 赖新春, 孙颖. FLAPW方法研究δ-钚单层表面几何和电子结构[J]. 物理化学学报, 2005, 21(6): 686-689. doi: 10.3866/PKU.WHXB20050622

    LI G, LAI X C, SUN Y. An all-electron FLAPW study of geometric and electronic structures for δ-Pu monolayer[J]. Acta Physico-Chimica Sinica, 2005, 21(6): 686-689. doi: 10.3866/PKU.WHXB20050622
    [10]
    郭继军, 刘国平, 魏洪源. O2在δ-Pu(100)表面吸附行为的第一原理研究[J]. 计算机与应用化学, 2013, 6: 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYH201306008.htm

    GUO J J, LIU G P, WEI H Y. A density functional theory study of molecular oxygen adsorption and dissociation on δ-Pu(100) surface[J]. Computers and Applied Chemistry, 2013, 6: 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYH201306008.htm
    [11]
    HUDA M N, RAY A K. A density functional study of molecular oxygen adsorption and reaction barrier on Pu (100) surface[J]. The European Physical Journal B, 2005, 43(1): 131-141. doi: 10.1140/epjb/e2005-00036-4
    [12]
    孙博, 刘海风, 宋海峰, 等. 钚表面钝化层抗氢蚀机理的微观动力学模拟[J]. 物理化学学报, 2015, 31(S1): 81-89.

    SUN B, LIU H F, SONG H F, et al. Microdynamics simulations of the hydrogen-corrosion resistance of passivation layers on Pu surface[J]. Acta Physico-Chimica Sinica, 2015, 31(S1): 81-89.
    [13]
    KRESSE G, FURTHMVLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. doi: 10.1103/PhysRevB.54.11169
    [14]
    KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave bethod[J]. Physical Review B, 1999, 59(3): 1758-1775. doi: 10.1103/PhysRevB.59.1758
    [15]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [16]
    HENKELMAN G, JÓNSSON H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle soints[J]. The Journal of Chemical Physics, 2000, 113(22): 9978-9985. doi: 10.1063/1.1323224
    [17]
    蒙大桥, 罗文华, 李赣, 等. Pu(100)表面吸附CO2的密度泛函研究[J]. 物理学报, 2009, 58(12): 8224-8229.

    MENG D Q, LUO W H, LI G, et al. Density functional study of CO2 adsorption on Pu(100) surface[J]. Acta Physica Sinica, 2009, 58(12): 8224-8229.
    [18]
    魏洪源, 胡睿, 熊晓玲, 等. H2在δ-Pu(100)表面吸附的第一原理研究[J]. 分子科学学报, 2010, 26(1): 37-41. doi: 10.3969/j.issn.1000-9035.2010.01.006

    WEI H Y, HU R, XIONG X L, et al. A first principle theory study of molecular hydrogen adsorption on δ-Pu(100) surface[J]. Journal of Molecular Science, 2010, 26(1): 37-41. doi: 10.3969/j.issn.1000-9035.2010.01.006
    [19]
    罗文华, 蒙大桥, 李赣, 等. CO在Pu(100)表面吸附的研究[J]. 物理学报, 2008, 57(1): 160-164. doi: 10.3321/j.issn:1000-3290.2008.01.027

    LUO W H, MENG D Q, LI G, et al. Density functional study of CO adsorption on Pu (100) surface[J]. Acta Physica Sinica, 2008, 57(1): 160-164. doi: 10.3321/j.issn:1000-3290.2008.01.027
    [20]
    YU M, TRINKLE D R. Accurate and efficient algorithm for bader exharge integration[J]. The Journal of Chemical Physics, 2011, 134(6): 064111/1-9. doi: 10.1063/1.3553716
    [21]
    陈秋云, 曹坤, 敖冰云, 等. 稀有气体原子与Pu(100)表面相互作用的第一性原理研究[J]. 原子能科学技术, 2013, 47(11): 1931-1936. doi: 10.7538/yzk.2013.47.11.1931

    CHEN Q Y, CAO K, AO B Y, et al. First-principles investigation of adsorption of rare gas atoms on Pu(100) surface[J]. Atomic Energy Science and Technology, 2013, 47(11): 1931-1936. doi: 10.7538/yzk.2013.47.11.1931
    [22]
    魏洪源, 宋宏涛, 熊晓玲, 等. CO在δ-Pu(100)表面的吸附结构和电子态[J]. 计算机与应用化学, 2009, 48(1): 126-132.

    WEI H Y, SONG H T, XIONG X L, et al. Geometric structure and electronic states of CO adsorption on δ-Pu(100)surface[J]. Computer and Applied Chemistry, 2009, 48(1): 126-132.
    [23]
    张苗, 侯贤华, 王基蕴, 等. Ag在Si表面吸附的第一性原理研究[J]. 华南师范大学学报(自然科学版), 2014, 46(5): 49-53. doi: 10.6054/j.jscnun.2014.06.041

    ZHANG M, HOU X H, WANG J Y, et al. First principles study of Ag adsorption on Si surfaces[J]. Journal of South China Normal University (Natural Science Edition), 2014, 46(5): 49-53. doi: 10.6054/j.jscnun.2014.06.041
    [24]
    刘玉亭, 徐超, 顾凤龙. SnO2 (110)表面In掺杂对NO2气敏吸附性能提升的理论研究[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 16-22. doi: 10.6054/j.jscnun.2021003

    LIU Y T, XU C, GU F L. A Theoretical study of the enhancement of NO2 sensing and adsoption on indium-doped SnO2(110) surface[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(1): 16-22. doi: 10.6054/j.jscnun.2021003
    [25]
    张灿鹏, 邵志刚. CO2和CO分子在五边形石墨烯表面的吸附行为[J]. 华南师范大学学报(自然科学版), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003

    ZHANG C P, SHAO Z G. The adsorption behavior of CO2 and CO on penta-graphene[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003
    [26]
    DERINGER V L, TCHOUGRÉEFF A L, DRONSKOWSKI R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets[J]. The Journal of Physical Chemistry, 2011, 115(21): 5461-5466. http://www.onacademic.com/detail/journal_1000035250016110_010c.html
    [27]
    NELSON R, ERTURAL C, GEORGE J, et al. LOBSTER: local orbital projections, atomic charges, and chemical-gonding analysis from projector augmented-wave-based gensity-functional theory[J]. Journal of Computational Chemistry, 2020, 41(21): 1931-1940. doi: 10.1002/jcc.26353

Catalog

    Article views (1014) PDF downloads (186) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return