Citation: | CHEN Long, ZHANG Wenchao, HUANG Rui, NIU Yuhang, LI Wei, TANG Jiyu. The Interface Engineering of Lead-based Perovskite Solar Cells[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 7-12. DOI: 10.6054/j.jscnun.2022002 |
[1] |
National renewable energy laboratory (USA). Best research-cell efficiencies[EB/OL]. https://www.nrel.gov/pv/cell-efficiency.html.
|
[2] |
WANG Q, PHUNG N, di GIROLAMO D, et al. Enhancement in lifespan of halide perovskite solar cells[J]. Energy and Environmental Science, 2019, 12: 865-886. doi: 10.1039/C8EE02852D
|
[3] |
江茂, 张栋梁. 缺陷化学理论及其发展[J]. 华南师范大学学报(自然科学版), 1994(1): 74-79. http://journal-n.scnu.edu.cn/article/id/1909
|
[4] |
KEARNEY K, SEO G, MATSUSHIMA T, et al. Computational analysis of the interplay between deep level traps and perovskite solar cell efficiency[J]. Journal of the American Chemical Society, 2018, 140(46): 15655-15660. doi: 10.1021/jacs.8b06002
|
[5] |
YIN W J, SHI T, YAN Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance[J]. Advanced Materials, 2014, 26(27): 4653-4658. doi: 10.1002/adma.201306281
|
[6] |
HEO S, SEO G, LEE Y, et al. Deep level trapped defect analysis in CH3NH3PbI3 perovskite solar cells by deep level transient spectroscopy[J]. Energy and Environmental Science, 2017, 10: 1128-1133. doi: 10.1039/C7EE00303J
|
[7] |
LEIJTENS T, EPERON G E, BARKER A J, et al. Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells[J]. Energy and Environmental Science, 2016, 9: 3472-3481. doi: 10.1039/C6EE01729K
|
[8] |
CHRISTIANS J A, FUNG R C M, KAMAT P V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide[J]. Journal of the American Chemical Society, 2014, 136(2): 758-764. doi: 10.1021/ja411014k
|
[9] |
QIN P, PAEK S, DAR M I, et al. Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material[J]. Journal of the American Chemical Society, 2014, 136(24): 8516-8519. doi: 10.1021/ja503272q
|
[10] |
贺冠南, 黄波. ZnO陷光结构材料的制备及其太阳能电池性能的研究[J]. 华南师范大学学报(自然科学版), 2019, 51(4): 1-6. doi: 10.6054/j.jscnun.2019056
HE G N, HUANG B. Preparation of ZnO light trapping materials and their performance in solar cells[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(4): 1-6. doi: 10.6054/j.jscnun.2019056
|
[11] |
SON D Y, IM J H, KIM H S, et al. 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system[J]. The Journal of Physical Chemistry C, 2014, 118(30): 16567-16573. doi: 10.1021/jp412407j
|
[12] |
LIU Y, YUN S, ROCKETT A. A new simulation software of solar cells-wxAMPS[J]. Solar Energy Materials and Solar Cells, 2012, 98: 124-128. doi: 10.1016/j.solmat.2011.10.010
|
[13] |
MANZOOR S, HÄUSELE J, BUSH K A, et al. Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers[J]. Optics Express, 2018, 26(21): 27441-27460. doi: 10.1364/OE.26.027441
|
[14] |
AZRI F, MEFTAH A, SENGOUGA N, et al. Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell[J]. Solar Energy, 2019, 181: 372-378. doi: 10.1016/j.solener.2019.02.017
|
[15] |
MINEMOTO T, MURATA M. Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation[J]. Current Applied Physics, 2014, 14(11): 1428-1433. doi: 10.1016/j.cap.2014.08.002
|
[16] |
PANDEY R, CHAUJAR R. Numerical simulations: toward the design of 27.6% efficient four-terminal semi-transparent perovskite/SiC passivated rear contact silicon tandem solar cell[J]. Superlattices and Microstructures, 2016, 100: 656-666. doi: 10.1016/j.spmi.2016.10.033
|
[17] |
仝可蒙. CuO及Ga2O3基薄膜太阳能电池的理论模拟[D]. 郑州: 郑州大学, 2018.
TONG K M. Numerical simulation on CuO- and Ga2O3-based thin film solar cell[D]. Zhengzhou: Zhengzhou University, 2018.
|
[18] |
KEARNEY K L, ROCKETT A A. Simulation of charge transport and recombination across functionalized Si (111) photoelectrodes[J]. Journal of The Electrochemical Society, 2016, 163: 598-604. doi: 10.1149/2.1331607jes
|
[19] |
KAO K C. Electrical conduction and photoconduction[M]//Dielectric Phenomena in Solids. Salt Lake, USA: American Academic Press, 2004: 381-514.
|
[20] |
SRIDHARAN A, NOEL N K, HWANG H, et al. Time-resolved imaging of non-diffusive carrier transport in long-lifetime halide perovskite thin films[J]. Physical Review Materials, 2019, 3: 1254/1-3. http://arxiv.org/abs/1905.11242
|
[21] |
MINEMOTO T, MURATA M. Theoretical analysis on effect of band offsets in perovskite solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 133: 8-14. doi: 10.1016/j.solmat.2014.10.036
|