• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHEN Long, ZHANG Wenchao, HUANG Rui, NIU Yuhang, LI Wei, TANG Jiyu. The Interface Engineering of Lead-based Perovskite Solar Cells[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 7-12. DOI: 10.6054/j.jscnun.2022002
Citation: CHEN Long, ZHANG Wenchao, HUANG Rui, NIU Yuhang, LI Wei, TANG Jiyu. The Interface Engineering of Lead-based Perovskite Solar Cells[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 7-12. DOI: 10.6054/j.jscnun.2022002

The Interface Engineering of Lead-based Perovskite Solar Cells

More Information
  • Received Date: May 31, 2021
  • Available Online: March 13, 2022
  • The ITO/ZnO/interface layer (IFL)/MAPbI3/Sprio-OMeTAD/Au structure of Perovskite Solar Cells (PSCs) and the electron transport layer (ETL)/absorber interface engineering are studied based on the wxAMPS solar cell numerical simulation software micro-platform. The results show that the performance of PSCs is almost unchanged when the defect density of the interface layer is lower than 1014 cm-3, and when the defect density is higher than 1014 cm-3, the performance of PSCs declines sharply. When the affinity difference(Δχ) between the interface layer and the absorber layer is within the range of -0.7~-0.1 eV, the parameters of PSCs increase with the increase of Δχ; when Δχ is within the range of -0.1~0.5 eV, the solar cell performance shows a gentle increase. When Δχ is greater than 0.5 eV, the short-circuit current (JSC) of the solar cell shows a gentle increase while the open circuit voltage (VOC), fill factor (FF) and photovoltaic conversion efficiency (PCE) decrease rapidly. When the band gap Eg increases within 0.9~1.4 eV, the VOC, FF and PCE of PSCs increase. When the band gap Eg is greater than 1.4 eV, the performance parameters of PSCs remain unchanged basically.
  • [1]
    National renewable energy laboratory (USA). Best research-cell efficiencies[EB/OL]. https://www.nrel.gov/pv/cell-efficiency.html.
    [2]
    WANG Q, PHUNG N, di GIROLAMO D, et al. Enhancement in lifespan of halide perovskite solar cells[J]. Energy and Environmental Science, 2019, 12: 865-886. doi: 10.1039/C8EE02852D
    [3]
    江茂, 张栋梁. 缺陷化学理论及其发展[J]. 华南师范大学学报(自然科学版), 1994(1): 74-79. http://journal-n.scnu.edu.cn/article/id/1909
    [4]
    KEARNEY K, SEO G, MATSUSHIMA T, et al. Computational analysis of the interplay between deep level traps and perovskite solar cell efficiency[J]. Journal of the American Chemical Society, 2018, 140(46): 15655-15660. doi: 10.1021/jacs.8b06002
    [5]
    YIN W J, SHI T, YAN Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance[J]. Advanced Materials, 2014, 26(27): 4653-4658. doi: 10.1002/adma.201306281
    [6]
    HEO S, SEO G, LEE Y, et al. Deep level trapped defect analysis in CH3NH3PbI3 perovskite solar cells by deep level transient spectroscopy[J]. Energy and Environmental Science, 2017, 10: 1128-1133. doi: 10.1039/C7EE00303J
    [7]
    LEIJTENS T, EPERON G E, BARKER A J, et al. Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells[J]. Energy and Environmental Science, 2016, 9: 3472-3481. doi: 10.1039/C6EE01729K
    [8]
    CHRISTIANS J A, FUNG R C M, KAMAT P V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide[J]. Journal of the American Chemical Society, 2014, 136(2): 758-764. doi: 10.1021/ja411014k
    [9]
    QIN P, PAEK S, DAR M I, et al. Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material[J]. Journal of the American Chemical Society, 2014, 136(24): 8516-8519. doi: 10.1021/ja503272q
    [10]
    贺冠南, 黄波. ZnO陷光结构材料的制备及其太阳能电池性能的研究[J]. 华南师范大学学报(自然科学版), 2019, 51(4): 1-6. doi: 10.6054/j.jscnun.2019056

    HE G N, HUANG B. Preparation of ZnO light trapping materials and their performance in solar cells[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(4): 1-6. doi: 10.6054/j.jscnun.2019056
    [11]
    SON D Y, IM J H, KIM H S, et al. 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system[J]. The Journal of Physical Chemistry C, 2014, 118(30): 16567-16573. doi: 10.1021/jp412407j
    [12]
    LIU Y, YUN S, ROCKETT A. A new simulation software of solar cells-wxAMPS[J]. Solar Energy Materials and Solar Cells, 2012, 98: 124-128. doi: 10.1016/j.solmat.2011.10.010
    [13]
    MANZOOR S, HÄUSELE J, BUSH K A, et al. Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers[J]. Optics Express, 2018, 26(21): 27441-27460. doi: 10.1364/OE.26.027441
    [14]
    AZRI F, MEFTAH A, SENGOUGA N, et al. Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell[J]. Solar Energy, 2019, 181: 372-378. doi: 10.1016/j.solener.2019.02.017
    [15]
    MINEMOTO T, MURATA M. Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation[J]. Current Applied Physics, 2014, 14(11): 1428-1433. doi: 10.1016/j.cap.2014.08.002
    [16]
    PANDEY R, CHAUJAR R. Numerical simulations: toward the design of 27.6% efficient four-terminal semi-transparent perovskite/SiC passivated rear contact silicon tandem solar cell[J]. Superlattices and Microstructures, 2016, 100: 656-666. doi: 10.1016/j.spmi.2016.10.033
    [17]
    仝可蒙. CuO及Ga2O3基薄膜太阳能电池的理论模拟[D]. 郑州: 郑州大学, 2018.

    TONG K M. Numerical simulation on CuO- and Ga2O3-based thin film solar cell[D]. Zhengzhou: Zhengzhou University, 2018.
    [18]
    KEARNEY K L, ROCKETT A A. Simulation of charge transport and recombination across functionalized Si (111) photoelectrodes[J]. Journal of The Electrochemical Society, 2016, 163: 598-604. doi: 10.1149/2.1331607jes
    [19]
    KAO K C. Electrical conduction and photoconduction[M]//Dielectric Phenomena in Solids. Salt Lake, USA: American Academic Press, 2004: 381-514.
    [20]
    SRIDHARAN A, NOEL N K, HWANG H, et al. Time-resolved imaging of non-diffusive carrier transport in long-lifetime halide perovskite thin films[J]. Physical Review Materials, 2019, 3: 1254/1-3. http://arxiv.org/abs/1905.11242
    [21]
    MINEMOTO T, MURATA M. Theoretical analysis on effect of band offsets in perovskite solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 133: 8-14. doi: 10.1016/j.solmat.2014.10.036
  • Cited by

    Periodical cited type(5)

    1. 李若茜,吴正仲. 基于扎根理论的视疲劳检测游戏设计策略研究. 美与时代(上). 2025(02): 116-119 .
    2. 谢禹. 穿村公路路段限速标志设置有效性探究. 中国公路. 2025(03): 109-111 .
    3. 王海晓,丁旭,郭敏,吕贞. 基于视觉信息加工的草原公路行车安全性分析. 重庆交通大学学报(自然科学版). 2024(02): 65-74 .
    4. 李晓雷,谭翔峻,詹银霞. 团雾环境驾驶人最低注意力需求研究综述. 科学技术与工程. 2024(13): 5259-5270 .
    5. 胡汇. 山区公路弯道会车过程驾驶人心生理及行为耦合特性分析. 科技和产业. 2023(15): 169-174 .

    Other cited types(12)

Catalog

    Article views PDF downloads Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return