• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
KONG Qinke, ZHAN Yangmao, CHENG Yangchun, WANG Lei, SONG Wenle, LI Xuesong, XUE Zhiyong. A Study on the Soft Magnetic Properties of a High Performance Fe-based Nano-crystalline Alloy[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 1-6. DOI: 10.6054/j.jscnun.2022001
Citation: KONG Qinke, ZHAN Yangmao, CHENG Yangchun, WANG Lei, SONG Wenle, LI Xuesong, XUE Zhiyong. A Study on the Soft Magnetic Properties of a High Performance Fe-based Nano-crystalline Alloy[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 1-6. DOI: 10.6054/j.jscnun.2022001

A Study on the Soft Magnetic Properties of a High Performance Fe-based Nano-crystalline Alloy

More Information
  • Received Date: June 16, 2021
  • Available Online: March 13, 2022
  • The Fe75.9Cu1Si13B8Nb1.5Mo0.5Dy0.1 alloy iron core is designed on the basis of the Finemet alloy FeSiNbBCu series to study the soft magnetic properties of the core. The results show that the commercial amorphous alloy ribbons Fe75.9Cu1Si13B8Nb1.5Mo0.5Dy0.1 has complete amorphous structure in as-cast state and the α-Fe nanocrystalline phase precipitates on the amorphous matrix after vacuum annealing. The Fe75.9Cu1Si13B8Nb1.5Mo0.5Dy0.1 alloy has high ΔTx value(192 K) and good thermal stability, which can better control the formation of nanocrystalline structure. The transverse magnetic field annealing can greatly increase the μe of the material and reduce the Ps, which is more significant for the ribbons. The optimum annealing process of the Fe75.9Cu1Si13B8Nb1.5Mo0.5Dy0.1 alloy is that the transverse magnetic field of 0.10 T is applied and the temperature is kept at 833 K for 30 min. And the best saturation magnetic induction (Bs) is 1.39 T, for Hc is 4.6 A/m, μe=2.5×104 (1 kHz) and 1.52×104 (100 kHz). This material has potential application value considering the tendency of electronic component manufacture towards high frequency and miniaturization.
  • [1]
    HOU L, YANG W, LUO Q, et al. High Bs of FePBCCu nanocrystalline alloys with excellent soft-magnetic properties[J]. Journal of Non-Crystalline Solids, 2020, 530: 119800/1-5.
    [2]
    SURYANARAYANA C, KOCH C C. Nanocrystalline materials-current research and future directions[J]. Hyperfine Interactions, 2000, 130: 5-44. doi: 10.1023%2FA%3A1011026900989.pdf
    [3]
    ZHANG Z, PANG H, GEORGIADIS A, et al. Wireless power transfer-an overview[J]. IEEE Transactions on Industrial Electronics, 2018, 66(2): 1044/1-15.
    [4]
    YOSHIZAWA Y, YAMAUCHI K. Fe-based soft magnetic alloys composed of ultrafine grain structure[J]. Materials Transactions, 1990, 31(4): 307-314. doi: 10.2320/matertrans1989.31.307
    [5]
    LUO T, XU J, WANG G, et al. Composition dependence of amorphous forming, crystallization behavior, magnetic and electronic properties of silicon-rich FeSiBCuNb alloys[J]. Journal of Magnetism and Magnetic Materials, 2020, 505: 166714/1-5. http://www.sciencedirect.com/science/article/pii/S0304885320301037
    [6]
    郭尧, 朱春波, 宋凯, 等. 平板磁芯磁耦合谐振式无线电能传输技术[J]. 哈尔滨工业大学学报, 2014, 46(5): 23-27, 80. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201405006.htm

    GUO Y, ZHU C, SONG K, et al. Magnetic resonant wireless power transmission technology based on planar core[J]. Journal of Harbin Institute of Technology, 2014, 46(5): 23-27, 80. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201405006.htm
    [7]
    未倩倩, 赵凌霄, 黄炘, 等. 浅析电动汽车无线充电技术现状及发展趋势[J]. 汽车电器, 2019(6): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-QCDQ201906009.htm

    WEI Q Q, ZHAO L X, HUANG X, et al. Development status and trend analysis of wireless charging for electric vehicles[J]. Auto Electric Parts, 2019(6): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-QCDQ201906009.htm
    [8]
    DAN W. Major challenges of ieee transactions on industrial electronics[J]. IEEE Industrial Electronics Magazine, 2007, 1(2): 48-46.
    [9]
    ZHAO L, TIAN H, ZHONG X, et al. Influence of gadolinium and dysprosium substitution on magnetic properties and magnetocaloric effect of Fe78-xRexSi4Nb5B12Cu1 amorphous alloys[J]. Journal of Rare Earths, 2020, 38(12): 1317-1321. doi: 10.1016/j.jre.2020.02.005
    [10]
    CONDE C F, FRANCO V, CONDE A. Influence of mo addition in the crystallization of Fe-Si-B-Cu-Nb alloys[J]. Philosophical Magazine B, 2006, 76(4): 489-493.
    [11]
    HOU L, FAN X D, WANG Q Q, et al. Microstructure and soft-magnetic properties of FeCoPCCu nanocrystalline alloys[J]. Journal of Materials Science and Technology, 2019, 35(8): 1655-1661. doi: 10.1016/j.jmst.2019.03.030
    [12]
    FAN X D, ZHANG T, JIANG M F, et al. Synthesis of novel FeSiBPCCu alloys with high amorphous forming ability and good soft magnetic properties[J]. Journal of Non-Crystalline Solids, 2019, 503: 36-43. http://www.sciencedirect.com/science/article/pii/S0022309318305489
    [13]
    HERZER G. Modern soft magnets: amorphous and nanocrystalline materials[J]. Acta Materialia, 2013, 61(3): 718-734. doi: 10.1016/j.actamat.2012.10.040
    [14]
    LI Y H, JIA X J, ZHANG W, et al. Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing ɑ-Fe nanoparticles-structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys[J]. Journal of Materials Science and Technology, 2021, 65: 171-181. doi: 10.1016/j.jmst.2020.05.049
    [15]
    WAN F P, LIU T, KONG F Y, et al. Surface crystallization and magnetic properties of FeCuSiBNbMo melt-spun nanocrystalline alloys[J]. Materials Research Bulletin, 2017, 96: 275-280. doi: 10.1016/j.materresbull.2017.01.026
    [16]
    MARZO F F, PIERNA A R, ALTUBE A. Analysis of the nanocrystallization of Finemet type alloy by temperature-modulated differential scanning calorimetry[J]. Journal of Non-Crystalline Solids, 2001, 287(1): 349-354. http://www.onacademic.com/detail/journal_1000035469846910_e6b0.html
    [17]
    WILLARD M A. Chapter Four-nanocrystalline soft magnetic alloys two decades of progress[J]. Handbook of Magnetic Materials, 2013, 21: 173-342. http://www.sciencedirect.com/science/article/pii/B9780444595935000040
    [18]
    郭新鹏, 郭永权, 王京南, 等. SmCo5型中熵、高熵金属间化合物的结构与磁性[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 1-9. doi: 10.6054/j.jscnun.2021036

    GUO X P, GUO Y Q, WANG J N, et al. The structure and magnetic properties of SmCo5-type medium- and high-entropy intermetallic compounds[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 1-9. doi: 10.6054/j.jscnun.2021036
    [19]
    SUZUKI K, KATAOKA N, INOUE A, et al. High saturation magnetization and soft magnetic properties of bcc Fe-Zr-B alloys with ultrafine grain structure[J]. Materials Transactions, 1990, 31(8): 743-746. doi: 10.2320/matertrans1989.31.743
  • Cited by

    Periodical cited type(1)

    1. 姚琴, 谢柏臻, 裴一花. 聚乙二醇-聚乙烯亚胺负载超顺磁纳米Fe_3O_4的合成及其基因转染应用. 华南师范大学学报(自然科学版). 2018(06): 48-53 .

    Other cited types(0)

Catalog

    Article views (606) PDF downloads (391) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return