• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHENG Nana, MA Changshe. The Fast Privacy-preserving RFID Authentication Protocol Based on LPN[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(5): 113-120. DOI: 10.6054/j.jscnun.2021083
Citation: ZHENG Nana, MA Changshe. The Fast Privacy-preserving RFID Authentication Protocol Based on LPN[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(5): 113-120. DOI: 10.6054/j.jscnun.2021083

The Fast Privacy-preserving RFID Authentication Protocol Based on LPN

More Information
  • Received Date: February 07, 2021
  • Available Online: November 10, 2021
  • Most LPN-based RFID protocols focus on authentication but rarely consider privacy. The existing protocols for RFID based on LPN problem and privacy preservation are systematically analyzed and their advantages and disadvantages are summarized. Using the large storage device database in the RFID system and the pseudorandom generator, an LPN-based RFID privacy authentication protocol with fast identification is designed to ensure that privacy is not leaked during the authentication of the protocol. The efficiency and safety of the designed protocol are compared with that of the Tree-LSHB+ protocol, BAJR protocol and that of the MMR protocol. The research indicates the protocol has fast identification, provable security and authentication and good scalability.
  • [1]
    BLUM A, FURST M, KEARNSM, et al. Cryptographic pri-mitives based on hard learning problems[C]//Advances in Cryptology-CRYPTO'93. Berlin: Springer, 1993: 278-291.
    [2]
    HOPPER N J, BLUM M. Secure human identification protocols[C]//Advances in Cryptology-ASIACRYPT 2001. Berlin: Springer, 2001: 52-66.
    [3]
    JUELS A, WEIS S A. Authenticating pervasive devices with human protocols[C]// Advances in Cryptology-CRYPTO 2005. Berlin: Springer, 2005: 293-308.
    [4]
    GILBERT H, ROBSHAW M J B, SEURIN Y. Increasing the security and efficiency of HB+[C]//Advances in Cryptology-EUROCRYPT 2008. Berlin: Springer, 2008: 361-378.
    [5]
    KILTZ E, PIETRZAK K, VENTURI D, et al. Efficient authentication from hard learning problems[C]//Advances in Cryptology-EUROCRYPT 2011. Berlin: Springer, 2011: 7-26.
    [6]
    RIZOMILIOTIS P, GRITZALIS S. Revisiting lightweight authentication protocols based on hard learning prob-lems[C]//Proceedings of the Sixth ACM Conference on Security and Privacy in Wireless and Mobile Networks. New York: ACM, 2013: 125-130.
    [7]
    姜晓, 马昌社. 基于LPN抗中间人攻击的两轮认证协议[J]. 华南师范大学学报(自然科学版), 2016, 48(3): 64-68. doi: 10.6054/j.jscnun.2016.05.005

    JIANG X, MA C S. MIM secure two-round authentication protocols based on LPN[J]. Journal of South China Normal University(Natural Science Edition), 2016, 48(3): 64-68. doi: 10.6054/j.jscnun.2016.05.005
    [8]
    卿哲嘉. 基于LPN具有一般中间人安全的两轮认证协议[J]. 计算机工程, 2019, 45(2): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201902021.htm

    QING Z J. General MIM secure two-round authentication protocol based on LPN[J]. Computer Engineering, 2019, 45(2): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201902021.htm
    [9]
    DAS M L, KUMAR P, MARTIN A. Secure and privacy-preserving RFID authentication scheme for internet of things applications[J]. Wireless Personal Communications, 2020, 110(1): 339-353. doi: 10.1007/s11277-019-06731-1
    [10]
    AVOINE G, DYSLI E, OECHSLIN P. Reducing time complexity in RFID systems[C]//Selected Areas in Crypto-graphy. Berlin: Springer, 2005: 291-306.
    [11]
    LU L, HAN J, HU L, et al. Dynamic key-updating: privacy-preserving authentication for RFID systems[J]. International Journal of Distributed Sensor Networks, 2012, 8(5): 13-22. http://www.greenorbs.org/people/liu/SPA.pdf
    [12]
    LU L, HAN J, XIAO R, et al. ACTION: breaking the privacy barrier for RFID systems[C]//Proceedings of International Conference on Computer Communications. Brazil: IEEE, 2009: 1953-1961.
    [13]
    DENG G, LI H, ZHANG Y, et al. Tree-LSHB+: an LPN-based lightweight mutual authentication RFID protocol[J]. Wireless Personal Communications, 2013, 72(1): 159-174. doi: 10.1007/s11277-013-1006-2
    [14]
    ALOMAIR B, CLARK A, CUELLAR J, et al. Scalable RFID systems: a privacy-preserving protocol with constant-time identification[J]. IEEE Transactions on Parallel and Distributed Systems, 2011, 23(8): 1536-1550.
    [15]
    MAMUN M S I, MIYAJI A, RAHMAN M S. A secure and private RFID authentication protocol under SLPN problem[C]//Proceedings of the 6th International Conference on Network and System Security. Berlin: Springer, 2012: 476-489.
    [16]
    马昌社. 前向隐私安全的低成本RFID认证协议[J]. 计算机学报, 2011, 34(8): 1387-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201108006.htm

    MA C S. Low cost RFID authentication protocol with forwardprivacy[J]. Chinese Journal of Computers, 2011, 34(8): 1387-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201108006.htm
    [17]
    BERLEKAMP E, MCELIECE R, VAN TILBORG H. On the inherent intractability of certain coding problems[J]. IEEE Transactions on Information Theory, 1978, 24(3): 384-386. doi: 10.1109/TIT.1978.1055873
    [18]
    NOMAGUCHI H, SU C, MIYAJI A. New pseudorandom number generator for EPC Gen2[J]. IEICE Transactions on Information and Systems, 2020, 103(2): 292-298. http://www.researchgate.net/publication/338978473_New_Pseudo-Random_Number_Generator_for_EPC_Gen2
    [19]
    APPLEBAUM B, ISHAI Y, KUSHILEVITZ E. On pseudorandom generators with linear stretch in NC0[J]. Computational Complexity, 2008, 17(1): 38-69. doi: 10.1007/s00037-007-0237-6
    [20]
    MOSSEL E, SHPILKA A, TREVISAN L. On ε-biased generators in NC0[J]. Random Structures & Algorithms, 2006, 29(1): 56-81. doi: 10.1002/rsa.20112/abstract

Catalog

    Article views (433) PDF downloads (47) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return