Citation: | DAI Guangling, JIANG Shaojun, WU Jiachen, SHU Yuehong. The Vertical Co-Migration Behavior of Biochar and Cd in Farmland Near the Mining Area[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(5): 37-45. DOI: 10.6054/j.jscnun.2021073 |
[1] |
LI G, KHAN S, IBRAHIM M, et al. Biochars induced modification of dissolved organic matter (DOM) in soil andits impact on mobility and bioaccumulation of arsenic and cadmium[J]. Journal of Hazardous Materials, 2018, 348: 100-108. doi: 10.1016/j.jhazmat.2018.01.031
|
[2] |
苏炽权, 汝强, 石正禄, 等. 生物炭负载金属硒化物复合材料的储锂性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 32-37. doi: 10.6054/j.jscnun.2019082
SU C Q, RU Q, SHI Z L, et al. The lithium storage performance of biochar-loaded metal selenide composite material[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 32-37. doi: 10.6054/j.jscnun.2019082
|
[3] |
CHEN M, WANG D, YANG F, et al. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions[J]. Environmental Pollution, 2017, 230: 540-549. doi: 10.1016/j.envpol.2017.06.101
|
[4] |
UCHIMIYA M, LIU Z, SISTANI K. Field-scale fluorescence fingerprinting of biochar-borne dissolved organic carbon[J]. Journal of Environmental Management, 2016, 169: 184-190. http://daneshyari.com/article/preview/1055449.pdf
|
[5] |
STEDMONC A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography: Methods, 2008, 6(11): 572-579. doi: 10.4319/lom.2008.6.572
|
[6] |
UCHIMIYA M, NODA I, ORLOV A, et al. In situ and ex situ 2D infrared/fluorescence correlation monitoring of surface functionality and electron density of biochars[J]. ACS Sustainable Chemistry and Engineering, 2018, 6(6): 8055-8062. doi: 10.1021/acssuschemeng.8b01720
|
[7] |
陈玲桂. 生物炭输入对农田土壤重金属迁移的影响研究[D]. 杭州: 浙江大学, 2013.
CHEN L G. Influence of biochar on migration of heavy metal in agricultural soil[D]. Hangzhou: Zhejiang University, 2013.
|
[8] |
FAN Q, SUN J, QUAN G, et al. Insights into the effects of long-term biochar loading on water-soluble organic matter in soil: implications for the vertical co-migration of heavy metals[J]. Environment International, 2020, 136: 105439/1-12. doi: 10.1016/j.envint.2019.105439
|
[9] |
JIANG S, LIU J, WU J, et al. Assessing biochar application to immobilize Cd and Pb in a contaminated soil: a field experiment under a cucumber-sweet potato-rape rotation[J]. Environmental Geochemistry and Health, 2020, 42(12): 4233-4244. doi: 10.1007/s10653-020-00564-9
|
[10] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
LU R K. Methods for agricultural chemical analysis of soils[M]. Beijing: China's Agricultural Science and Technology Press, 2000.
|
[11] |
王建乐, 谢仕斌, 王冠, 等. 不同提取剂提取土壤中重金属能力的对比研究[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 55-62. doi: 10.6054/j.jscnun.2020009
WANG J L, XIE S B, WANG G, et al. A comparative study of the capacity of different extractants to extract heavy metals in soil[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(1): 55-62. doi: 10.6054/j.jscnun.2020009
|
[12] |
南忠仁, 李吉均. 干旱区耕作土壤中重金属镉铅镍剖面分布及行为研究——以白银市区灰钙土为例[J]. 干旱区研究, 2000(4): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200004007.htm
NAN Z R, LI J J. Study on the distribution and behavior of selected metals (Cd, Ni, Pb) in cultivated soil profile in arid zone (take Baiyin Region as an example)[J]. Arid Zone Research, 2000(4): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200004007.htm
|
[13] |
MVLLER G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal, 1969, 2(3): 108-118. http://www.researchgate.net/publication/308054537_Index_of_Geoaccumulation_in_Sediments_of_the_Rhine_River
|
[14] |
顾金峰, 朱四喜, 刘冬, 等. 贵州锁黄仓沼泽土壤重金属含量分布特征及污染评价[J]. 科学技术与工程, 2020, 20(13): 5429-5436. doi: 10.3969/j.issn.1671-1815.2020.13.063
GU J F, ZHU S X, LIU D, et al. Pollution assessment and distribution characteristics of heavy metal contents in swamp soils in Suohuangcang in Guizhou[J]. Science Technology and Engineering, 2020, 20(13): 5429-5436. doi: 10.3969/j.issn.1671-1815.2020.13.063
|
[15] |
CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science and Technology, 2008, 42(14): 5137-5143. doi: 10.1021/es8002684
|
[16] |
高瑞丽, 朱俊, 汤帆, 等. 水稻秸秆生物炭对镉、铅复合污染土壤中重金属形态转化的短期影响[J]. 环境科学学报, 2016, 36(1): 251-256. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201601031.htm
GAO R L, ZHU J, TANG F, et al. Fractions transformation of Cd, Pb in contaminated soil after short-term application of rice straw bichar[J]. Acta Scientiate Circumatantiae, 2016, 36(1): 251-256. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201601031.htm
|
[17] |
SMEBYE A, ALLING V, VOGT R D, et al. Biochar amendment to soil changes dissolved organic matter content and composition[J]. Chemosphere, 2016, 142: 100-105. doi: 10.1016/j.chemosphere.2015.04.087
|
[18] |
HE E, YANG Y, XU Z, et al. Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars[J]. Science of the Total Environment, 2019, 673: 245-253. doi: 10.1016/j.scitotenv.2019.04.037
|
[19] |
ZHANG A, ZHOU X, LI M, et al. Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China[J]. Chemosphere, 2017, 186: 986-993. doi: 10.1016/j.chemosphere.2017.08.074
|
[20] |
WEI J, TU C, YUAN G, et al. Limited Cu(Ⅱ) binding to biochar DOM: evidence from C K-edge NEXAFS and EEM-PARAFAC combined with two-dimensional correlation analysis[J]. Science of the Total Environment, 2020, 701: 134919/1-10. doi: 10.1016/j.scitotenv.2019.134919
|
[21] |
WU H, QI Y, DONG L, et al. Revealing the impact of pyrolysis temperature on dissolved organic matter released from the biochar prepared from Typha orientalis[J]. Chemosphere, 2019, 228: 264-270. doi: 10.1016/j.chemosphere.2019.04.143
|
[22] |
UCHIMIYA M, FRANZLUEBBERS A J, LIU Z, et al. Detection of biochar carbon by fluorescence and near-infrared-based chemometrics[J]. Aquatic Geochemistry, 2019, 24(5/6): 345-361. doi: 10.1007/s10498-018-9347-9
|
[23] |
WANG D, ZHANG W, HAO X, et al. Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size[J]. Environmental Science and Technology, 2013, 47(2): 821-828. doi: 10.1021/es303794d
|
[24] |
ZHANG X, SU C, LIU X, et al. Periodical changes of dissolved organic matter (DOM) properties induced by biochar application and its impact on downward migration of heavy metals under flood conditions[J]. Journal of Cleaner Production, 2020, 275: 123787/1-8. doi: 10.1016/j.jclepro.2020.123787
|
[25] |
HUANG M, LI Z, LUO N, et al. Application potential of biochar in environment: insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals[J]. Science of the Total Environment, 2019, 646: 220-228. doi: 10.1016/j.scitotenv.2018.07.282
|
[26] |
王宇珊, 刘成坚, 陈晓燕, 等. 垃圾焚烧厂周边土壤的重金属污染风险评价[J]. 华南师范大学学报(自然科学版), 2020, 52(5): 57-64. doi: 10.6054/j.jscnun.2020078
WANG Y S, LIU C J, CHEN X Y, et al. Pollution risk assessments of heavy metals in soils around a municipal solid waste incinerator[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(5): 57-64. doi: 10.6054/j.jscnun.2020078
|