• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
YANG Haoyan, LUAN Tao, HAN Zhongzhi, NI Jiangong, GAO Jiyue. "Identify Wind Force by Listening" Based on Deep Learning Spectrogram Classification[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(5): 10-16. DOI: 10.6054/j.jscnun.2021069
Citation: YANG Haoyan, LUAN Tao, HAN Zhongzhi, NI Jiangong, GAO Jiyue. "Identify Wind Force by Listening" Based on Deep Learning Spectrogram Classification[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(5): 10-16. DOI: 10.6054/j.jscnun.2021069

"Identify Wind Force by Listening" Based on Deep Learning Spectrogram Classification

More Information
  • Received Date: April 11, 2021
  • Available Online: November 10, 2021
  • Deep learning and spectrogram are innovatively combined to propose a new wind force level identification method, i.e., "identifying wind force by listening". Under laboratory conditions, the sound from 1~4 wind force was recorded as the original wind audio, which was converted into acoustic spectrograms with the Fourier transform and other methods, and a total of 2 608 two-dimensional acoustic spectrograms were obtained as network input data. The data were imported into the deep convolutional neural network GoogLeNet for wind force recognition, which reached an accuracy of 99.6%. In order to further verify the reliability of the experimental results, the spectrogram data were imported into ResNet18 and ShuffleNet for training, and the accuracy rate in both networks was 99.2%. The results showed that this method can effectively carry out wind force identification. "Identifying wind force by listening" realized wind force identification through deep learning for the first time, which is a new intelligent and fast wind force identification method.
  • [1]
    孙力, 毕硕本, 潘威, 等. 明清时期东南沿海地区的台风重建及影响因素分析[J]. 华南师范大学学报(自然科学版), 2019, 51(6): 88-97. doi: 10.6054/j.jscnun.2019106

    SUN L, BI S B, PAN W, et al. Reconstructing typhoons in southeast coastal areas during Ming and Qing dynasties and analyzing the factors[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(6): 88-97. doi: 10.6054/j.jscnun.2019106
    [2]
    FRAUKE T, FLORIS V D M, LUEDER V B, et al. Minute-scale power forecast of offshore wind turbines using long-range single-Doppler Lidar measurements[J]. Wind Energy Science, 2020, 5(4): 1449-1468. doi: 10.5194/wes-5-1449-2020
    [3]
    LIU B M, GUO J P, GONG W, et al. Characteristics and performance of wind profiles as observed by the radar wind profiler network of China[J]. Atmospheric Measurement Techniques, 2020, 13(8): 4589-4600. doi: 10.5194/amt-13-4589-2020
    [4]
    仇丽凤, 李雷茹. 基于GPS的GTS1型探空仪测风技术分析[J]. 科技创新导报, 2011(10): 101-101. doi: 10.3969/j.issn.1674-098X.2011.10.081

    QIU L F, LI L R. Analysis of GPS-based GTS1 radiosonde wind measurement technology[J]. Science and Technology Innovation Herald, 2011(10): 101-101. doi: 10.3969/j.issn.1674-098X.2011.10.081
    [5]
    董德保, 张统明, 芮斌. 风廓线雷达大气风场观测误差分析[J]. 气象科技, 2014, 42(1): 48-53. doi: 10.3969/j.issn.1671-6345.2014.01.007

    DONG D B, ZHANG T M, RUI B. Wind profiler radar observation error analysis of atmospheric wind fields[J]. Meteorological Science and Technology, 2014, 42(1): 48-53. doi: 10.3969/j.issn.1671-6345.2014.01.007
    [6]
    SUBRAHMANYAM K, BABY S R. C-band Doppler weather radar observations during the passage of tropical cyclone 'Ockhi'[J]. Natural Hazards, 2020, 104: 2197-2211. doi: 10.1007/s11069-020-04268-2
    [7]
    PIRHALLA M, HEIST D, PERRY S, et al. Urban wind field analysis from the Jack rabbit Ⅱ special sonic anemometer study[J]. Atmospheric Environment, 2020, 243: 117871/1-14. doi: 10.1016/j.atmosenv.2020.117871
    [8]
    CADENAS E, RIVERA W, CAMPOS-AMEZCUA R, et al. Wind speed prediction using a univariate Arima model and a multivariate Narx model[J]. Energy Weekly News, 2016, 9(2): 109-123. http://www.chemie.de/fachpublikationen/921785/
    [9]
    颜晓娟, 龚仁喜, 张千锋. 优化遗传算法寻优的SVM在短期风速预测中的应用[J]. 电力系统保护与控制, 2016, 44(9): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201609006.htm

    YAN X J, GONG R X, ZHANG Q F. Application of optimization svm based on improved genetic algorithm in short-term wind speed prediction[J]. Power System Protection and Control, 2016, 44(9): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201609006.htm
    [10]
    GUO Z, CHI D, WU J, et al. A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm[J]. Energy Conversion and Management, 2014, 84: 140-151. doi: 10.1016/j.enconman.2014.04.028
    [11]
    TIAN Z. Chaotic characteristic analysis of short-term wind speed time series with different time scales[J]. Energy Sources Part A: Recovery Utilization and Environmental Effects, 2019(3): 1649757/1-15. http://www.researchgate.net/publication/334973472_Chaotic_characteristic_analysis_of_short-term_wind_speed_time_series_with_different_time_scales
    [12]
    廖恩红, 李会芳, 王华, 等. 基于卷积神经网络的食品图像识别[J]. 华南师范大学学报(自然科学版), 2019, 51(4): 113-119. doi: 10.6054/j.jscnun.2019075

    LIAO E H, LI H F, WANG H, et al. Food image recognition based on convolutional neural network[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(4): 113-119. doi: 10.6054/j.jscnun.2019075
    [13]
    杜云梅, 黄帅, 梁会营. 基于深度卷积神经网络的脑电图异常检测[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 122-128. doi: 10.6054/j.jscnun.2020035

    DU Y M, HUANG S, LIANG H Y. The detection of anomaly in electroencephalogram with deep convolutional neural networks[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(2): 122-128. doi: 10.6054/j.jscnun.2020035
    [14]
    SARHAN S, NASR A A, SHAMS M. Multipose face recognition-based combined adaptive deep learning vector quantization[J]. Computational Intelligence and Neuroscience, 2020, 2020: 8821868/1-11. http://www.researchgate.net/publication/344388125_Multipose_Face_Recognition-Based_Combined_Adaptive_Deep_Learning_Vector_Quantization
    [15]
    蔡冬丽, 钟清华, 朱永升, 等. 基于混合神经网络的脑电情感识别[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 109-118. doi: 10.6054/j.jscnun.2021017

    CAI D L, ZHONG Q H, ZHU Y S, et al. EEG emotion recognition based on hybrid neural networks[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(1): 109-118. doi: 10.6054/j.jscnun.2021017
    [16]
    YANG H Y, NI J G, GAO J Y, et al. A novel method for peanut variety identification and classification by improved VGG16. [J]. Scientific Reports, 2021, 11(1): 15756/1-17. http://www.nature.com/articles/s41598-021-95240-y?utm_source=xmol&utm_medium=affiliate&utm_content=meta
    [17]
    张泽浩, 周卫星. 基于深度学习的图像去雾算法[J]. 华南师范大学学报(自然科学版), 2019, 51(3): 123-128. doi: 10.6054/j.jscnun.2019055

    ZHANG Z H, ZHOU W X. Image dehazing algorithm based on deep learning[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(3): 123-128. doi: 10.6054/j.jscnun.2019055
    [18]
    马琼雄, 余润笙, 石振宇, 等. 基于深度强化学习的水下机器人最优轨迹控制[J]. 华南师范大学学报(自然科学版), 2018, 50(1): 118-123. http://journal-n.scnu.edu.cn/article/id/4199

    MA Q X, YU R S, SHI Z Y, et al. Autonomous underwater vehicles optimal trajectory control based on deep reinforcement learning[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(1): 118-123. http://journal-n.scnu.edu.cn/article/id/4199
    [19]
    AK R, VITELLI V, ZIO E. An interval-valued neural network approach for uncertainty quantification in short-term wind speed prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(11): 2787-2800. doi: 10.1109/TNNLS.2015.2396933
    [20]
    KHODAYAR M, KAYNAK O, KHODAYAR M E. Rough deep neural architecture for short-term wind speed forecasting[J]. IEEE Transactions on Industrial Informatics, 2017, 13(6): 2770-2779. doi: 10.1109/TII.2017.2730846
    [21]
    CHEN J, ZENG G Q, ZHOU W, et al. Wind speed forecasting using nonlinear-learning ensemble of deep lear-ning time series prediction and extremal optimization[J]. Energy Conversion and Management, 2018, 165: 681-695. doi: 10.1016/j.enconman.2018.03.098
    [22]
    LIU H, MI X, LI Y. Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and elman neural network[J]. Energy Conversion and Management, 2018, 156: 498-514. doi: 10.1016/j.enconman.2017.11.053
    [23]
    SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convo-lutions[C]//Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9.
    [24]
    LANDIS H R, KOCH G G. The measurement of observer agreement for categorical data[J]. Biometrics, 1977, 33(1): 159-174. doi: 10.2307/2529310
    [25]
    BLANCHE P, JEAN-FRANCOIS D, RIOU J. A closed max-t test for multiple comparisons of areas under the ROC curve[J]. Biometrics, 2020, 76(4): 1-12. doi: 10.1111/biom.13401

Catalog

    Article views (426) PDF downloads (65) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return