Citation: | YANG Haoyan, LUAN Tao, HAN Zhongzhi, NI Jiangong, GAO Jiyue. "Identify Wind Force by Listening" Based on Deep Learning Spectrogram Classification[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(5): 10-16. DOI: 10.6054/j.jscnun.2021069 |
[1] |
孙力, 毕硕本, 潘威, 等. 明清时期东南沿海地区的台风重建及影响因素分析[J]. 华南师范大学学报(自然科学版), 2019, 51(6): 88-97. doi: 10.6054/j.jscnun.2019106
SUN L, BI S B, PAN W, et al. Reconstructing typhoons in southeast coastal areas during Ming and Qing dynasties and analyzing the factors[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(6): 88-97. doi: 10.6054/j.jscnun.2019106
|
[2] |
FRAUKE T, FLORIS V D M, LUEDER V B, et al. Minute-scale power forecast of offshore wind turbines using long-range single-Doppler Lidar measurements[J]. Wind Energy Science, 2020, 5(4): 1449-1468. doi: 10.5194/wes-5-1449-2020
|
[3] |
LIU B M, GUO J P, GONG W, et al. Characteristics and performance of wind profiles as observed by the radar wind profiler network of China[J]. Atmospheric Measurement Techniques, 2020, 13(8): 4589-4600. doi: 10.5194/amt-13-4589-2020
|
[4] |
仇丽凤, 李雷茹. 基于GPS的GTS1型探空仪测风技术分析[J]. 科技创新导报, 2011(10): 101-101. doi: 10.3969/j.issn.1674-098X.2011.10.081
QIU L F, LI L R. Analysis of GPS-based GTS1 radiosonde wind measurement technology[J]. Science and Technology Innovation Herald, 2011(10): 101-101. doi: 10.3969/j.issn.1674-098X.2011.10.081
|
[5] |
董德保, 张统明, 芮斌. 风廓线雷达大气风场观测误差分析[J]. 气象科技, 2014, 42(1): 48-53. doi: 10.3969/j.issn.1671-6345.2014.01.007
DONG D B, ZHANG T M, RUI B. Wind profiler radar observation error analysis of atmospheric wind fields[J]. Meteorological Science and Technology, 2014, 42(1): 48-53. doi: 10.3969/j.issn.1671-6345.2014.01.007
|
[6] |
SUBRAHMANYAM K, BABY S R. C-band Doppler weather radar observations during the passage of tropical cyclone 'Ockhi'[J]. Natural Hazards, 2020, 104: 2197-2211. doi: 10.1007/s11069-020-04268-2
|
[7] |
PIRHALLA M, HEIST D, PERRY S, et al. Urban wind field analysis from the Jack rabbit Ⅱ special sonic anemometer study[J]. Atmospheric Environment, 2020, 243: 117871/1-14. doi: 10.1016/j.atmosenv.2020.117871
|
[8] |
CADENAS E, RIVERA W, CAMPOS-AMEZCUA R, et al. Wind speed prediction using a univariate Arima model and a multivariate Narx model[J]. Energy Weekly News, 2016, 9(2): 109-123. http://www.chemie.de/fachpublikationen/921785/
|
[9] |
颜晓娟, 龚仁喜, 张千锋. 优化遗传算法寻优的SVM在短期风速预测中的应用[J]. 电力系统保护与控制, 2016, 44(9): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201609006.htm
YAN X J, GONG R X, ZHANG Q F. Application of optimization svm based on improved genetic algorithm in short-term wind speed prediction[J]. Power System Protection and Control, 2016, 44(9): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201609006.htm
|
[10] |
GUO Z, CHI D, WU J, et al. A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm[J]. Energy Conversion and Management, 2014, 84: 140-151. doi: 10.1016/j.enconman.2014.04.028
|
[11] |
TIAN Z. Chaotic characteristic analysis of short-term wind speed time series with different time scales[J]. Energy Sources Part A: Recovery Utilization and Environmental Effects, 2019(3): 1649757/1-15. http://www.researchgate.net/publication/334973472_Chaotic_characteristic_analysis_of_short-term_wind_speed_time_series_with_different_time_scales
|
[12] |
廖恩红, 李会芳, 王华, 等. 基于卷积神经网络的食品图像识别[J]. 华南师范大学学报(自然科学版), 2019, 51(4): 113-119. doi: 10.6054/j.jscnun.2019075
LIAO E H, LI H F, WANG H, et al. Food image recognition based on convolutional neural network[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(4): 113-119. doi: 10.6054/j.jscnun.2019075
|
[13] |
杜云梅, 黄帅, 梁会营. 基于深度卷积神经网络的脑电图异常检测[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 122-128. doi: 10.6054/j.jscnun.2020035
DU Y M, HUANG S, LIANG H Y. The detection of anomaly in electroencephalogram with deep convolutional neural networks[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(2): 122-128. doi: 10.6054/j.jscnun.2020035
|
[14] |
SARHAN S, NASR A A, SHAMS M. Multipose face recognition-based combined adaptive deep learning vector quantization[J]. Computational Intelligence and Neuroscience, 2020, 2020: 8821868/1-11. http://www.researchgate.net/publication/344388125_Multipose_Face_Recognition-Based_Combined_Adaptive_Deep_Learning_Vector_Quantization
|
[15] |
蔡冬丽, 钟清华, 朱永升, 等. 基于混合神经网络的脑电情感识别[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 109-118. doi: 10.6054/j.jscnun.2021017
CAI D L, ZHONG Q H, ZHU Y S, et al. EEG emotion recognition based on hybrid neural networks[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(1): 109-118. doi: 10.6054/j.jscnun.2021017
|
[16] |
YANG H Y, NI J G, GAO J Y, et al. A novel method for peanut variety identification and classification by improved VGG16. [J]. Scientific Reports, 2021, 11(1): 15756/1-17. http://www.nature.com/articles/s41598-021-95240-y?utm_source=xmol&utm_medium=affiliate&utm_content=meta
|
[17] |
张泽浩, 周卫星. 基于深度学习的图像去雾算法[J]. 华南师范大学学报(自然科学版), 2019, 51(3): 123-128. doi: 10.6054/j.jscnun.2019055
ZHANG Z H, ZHOU W X. Image dehazing algorithm based on deep learning[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(3): 123-128. doi: 10.6054/j.jscnun.2019055
|
[18] |
马琼雄, 余润笙, 石振宇, 等. 基于深度强化学习的水下机器人最优轨迹控制[J]. 华南师范大学学报(自然科学版), 2018, 50(1): 118-123. http://journal-n.scnu.edu.cn/article/id/4199
MA Q X, YU R S, SHI Z Y, et al. Autonomous underwater vehicles optimal trajectory control based on deep reinforcement learning[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(1): 118-123. http://journal-n.scnu.edu.cn/article/id/4199
|
[19] |
AK R, VITELLI V, ZIO E. An interval-valued neural network approach for uncertainty quantification in short-term wind speed prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(11): 2787-2800. doi: 10.1109/TNNLS.2015.2396933
|
[20] |
KHODAYAR M, KAYNAK O, KHODAYAR M E. Rough deep neural architecture for short-term wind speed forecasting[J]. IEEE Transactions on Industrial Informatics, 2017, 13(6): 2770-2779. doi: 10.1109/TII.2017.2730846
|
[21] |
CHEN J, ZENG G Q, ZHOU W, et al. Wind speed forecasting using nonlinear-learning ensemble of deep lear-ning time series prediction and extremal optimization[J]. Energy Conversion and Management, 2018, 165: 681-695. doi: 10.1016/j.enconman.2018.03.098
|
[22] |
LIU H, MI X, LI Y. Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and elman neural network[J]. Energy Conversion and Management, 2018, 156: 498-514. doi: 10.1016/j.enconman.2017.11.053
|
[23] |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convo-lutions[C]//Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9.
|
[24] |
LANDIS H R, KOCH G G. The measurement of observer agreement for categorical data[J]. Biometrics, 1977, 33(1): 159-174. doi: 10.2307/2529310
|
[25] |
BLANCHE P, JEAN-FRANCOIS D, RIOU J. A closed max-t test for multiple comparisons of areas under the ROC curve[J]. Biometrics, 2020, 76(4): 1-12. doi: 10.1111/biom.13401
|