• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LUAN Yigang, YIN Yue, LI Yongxi, FU Hao, MA Zhengwei. The Characteristics of Aerosol Diffusion in a Public Space[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(5): 1-9. DOI: 10.6054/j.jscnun.2021068
Citation: LUAN Yigang, YIN Yue, LI Yongxi, FU Hao, MA Zhengwei. The Characteristics of Aerosol Diffusion in a Public Space[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(5): 1-9. DOI: 10.6054/j.jscnun.2021068

The Characteristics of Aerosol Diffusion in a Public Space

More Information
  • Received Date: March 29, 2021
  • Available Online: November 10, 2021
  • Numerical simulation was used to predict the spread of locally triggered virus aerosols in a public indoor environment. The common realizable k-ε turbulence model was used to study the transient diffusion characteristics of aerosols in a public space. Aerosol particles diffused forward and upward over time in a confined space and finally stayed in the air with the indoor circulation. After the particles were ejected, only a few large particles fall to the ground within 15 s, some particles adhered to the wall and the human body in 60 s, and 70.86%(particle number residual rate) of the particles were still in the indoor air. On this basis, a comparative study of three ventilation schemes was carried out, including opposite-side ventilation, upper-side ventilation, and single-side air ventilation of opposite- and upper-side return air. Ventilation conditions destroyed the original indoor circulation, and particles flew out of the exhaust vent along with the airflow. The results showed that the residual rate of indoor particles in the opposite ventilation scheme was 65.40%, that in the upper-side ventilation scheme was 63.22%, that in the single-side air ventilation scheme was 70.32%. Therefore, the upper-side ventilation scheme has a shorter particle transmission distance and a lower residual rate of indoor particles, which is an ideal ventilation scheme for reducing aerosols in a public spaces.
  • [1]
    赵钧, 尚智, 赵征, 等. 用计算流体力学方法研究非典型肺炎病毒颗粒的分布[J]. 上海交通大学学报, 2005, 39(11): 147-149, 154. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200511033.htm

    ZHAO J, SHANG Z, ZHAO Z, et al. An investigation of SARS virus particles' spreading using computational fluid dynamics method[J]. Journal of Shanghai Jiaotong University, 2005, 39(11): 147-149, 154. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200511033.htm
    [2]
    邓伟鹏, 沈晋明, 唐喜庆, 等. SARS隔离病房内的气流组织优化研究[J]. 建筑热能通风空调, 2005, 24(2): 9-14, 67. doi: 10.3969/j.issn.1003-0344.2005.02.003

    DENG W P, SHEN J M, TANG X Q, et al. The study on the optimization of indoor air distribution for SARS isolation wards[J]. Building Energy and Environment, 2005, 24(2): 9-14, 67. doi: 10.3969/j.issn.1003-0344.2005.02.003
    [3]
    WANG J L, CHOW T T. Numerical investigation of influence of human walking on dispersion and deposition of expiratory droplets in airborne infection isolation room[J]. Building and Environment, 2011, 46(10): 1993-2002. doi: 10.1016/j.buildenv.2011.04.008
    [4]
    高乃平, 贺启滨, 李晓萍, 等. 人工气候室内呼出气溶胶颗粒物分布的实验研究[J]. 同济大学学报(自然科学版), 2012, 40(11): 1680-1685. doi: 10.3969/j.issn.0253-374x.2012.11.016

    GAO N P, HE Q B, LI X P, et al. Experimental study on distribution of human exhaled aerosol particles in a full-scale chamber[J]. Journal of Tongji University(Natural Science), 2012, 40(11): 1680-1685. doi: 10.3969/j.issn.0253-374x.2012.11.016
    [5]
    宗青松. 室内颗粒物分布与沉积规律研究[D]. 马鞍山: 安徽工业大学, 2012.

    ZONG Q S. Studies on distribution and deposition of indoor particulate matter[D]. Ma'anshan: Anhui University of Technology, 2012.
    [6]
    BROHUS H, NIELSEN P V. Personal exposure in displacement ventilated rooms[J]. Indoor Air, 1996, 6(3): 157-167. doi: 10.1111/j.1600-0668.1996.t01-1-00003.x
    [7]
    CERMAK R, MELIKOV A K. Protection of occupants from exhaled infectious agents and floor material emissions in rooms with personalized and underfloor ventilation[J]. HVAC&R Research, 2007, 13(1): 23-38. http://taskair.com/knowledge/Cermak%20and%20Melikov-HVAC&R-2007.pdf
    [8]
    韩云龙, 胡永梅, 钱付平, 等. 自然通风室内颗粒物分布特征[J]. 安全与环境学报, 2013, 13(2): 116-120. doi: 10.3969/j.issn.1009-6094.2013.02.025

    HAN Y L, HU Y M, QIAN F P, et al. On the distributional features of the dust particles in a naturally ventilated room condition[J]. Journal of Safety and Environment, 2013, 13(2): 116-120. doi: 10.3969/j.issn.1009-6094.2013.02.025
    [9]
    康智强, 张亿先, 冯国会, 等. 会议室内飞沫气溶胶分布特征的数值模拟[J]. 沈阳建筑大学学报(自然科学版), 2017, 33(3): 562-568. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201703023.htm

    KANG Z Q, ZHANG Y X, FENG G H, et al. Numerical simulation of droplet aerosols in conference room[J]. Journal of Shenyang Jianzhu University(Natural Science), 2017, 33(3): 562-568. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201703023.htm
    [10]
    刘荔, 张毅, 付林志, 等. 热分层环境人际间飞沫传染风险与对策研究[J]. 暖通空调, 2020, 50(6): 19-25, 85. https://www.cnki.com.cn/Article/CJFDTOTAL-NTKT202006005.htm

    LIU L, ZHANG Y, FU L Z, et al. Interpersonal droplet transmission risk and countermeasures in thermally stratified environment[J]. Heating Ventilating and Air Conditioning, 2020, 50(6): 19-25, 85. https://www.cnki.com.cn/Article/CJFDTOTAL-NTKT202006005.htm
    [11]
    殷平. 新型冠状病毒肺炎疫情与集中空调系统[J]. 暖通空调, 2020, 50(10): 24-30, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-NTKT202010003.htm

    YIN P. COVID-19 epidemic and central air conditioning systems[J]. Heating Ventilation Air Conditioning, 2020, 50(10): 24-30, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-NTKT202010003.htm
    [12]
    李先庭, 杨建荣, 王欣. 室内空气品质研究现状与发展[J]. 暖通空调, 2000(3): 36-40. doi: 10.3969/j.issn.1002-8501.2000.03.011

    LI X T, YANG J R, WANG X. Status and development of indoor air quality research[J]. Heating Ventilation Air Conditioning, 2000(3): 36-40. doi: 10.3969/j.issn.1002-8501.2000.03.011
    [13]
    赵彬, 陈玖玖, 李先庭, 等. 室内颗粒物的来源、健康效应及分布运动研究进展[J]. 环境与健康杂志, 2005(1): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ200501035.htm

    ZHAO B, CHEN J J, LI X T, et al. Source, effect and distribution of indoor particulate matter[J]. Journal of Environment and Health, 2005(1): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ200501035.htm
    [14]
    CHEN Q. Comparison of different k-ε models for indoor air flow computations[J]. Numerical Heat Transfer B, 1995, 28(3): 353-369. doi: 10.1080/10407799508928838
    [15]
    TANG J W, NICOLLE A D, KLETTNER C A, et al. Airflow dynamics of human jets: sneezing and breathing-potential sources of infectious aerosols[J]. PLoS One, 2013, 8(4): e59970/1-7. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613375/pdf/pone.0059970.pdf
    [16]
    余勇, 谷正气, 刘水长, 等. 客车室内悬浮生物颗粒传播与控制数值研究[J]. 科学技术与工程, 2014, 14(12): 277-283. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201412058.htm

    YU Y, GU Z Q, LIU C S, et al. Simulation of the diffusion and control of the passenger car indoor suspended biological particles[J]. Science Technology and Engineering, 2014, 14(12): 277-283. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201412058.htm
    [17]
    LICINA D, PANTELIC J, MELIKOV A, et al. Experimental investigation of the human convective boundary layer in a quiescent indoor environment[J]. Building and Environment, 2014, 75: 79-91. http://www.onacademic.com/detail/journal_1000036130738510_0289.html

Catalog

    Article views (619) PDF downloads (91) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return