• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHENG Yangcheng, LI Lili, WANG Yunpeng. The Multi-feature Parameter Classification of Aerosol Based on OMI Remote Sensing Data: A Case Study in Guangdong Province[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(4): 68-75. DOI: 10.6054/j.jscnun.2021060
Citation: ZHENG Yangcheng, LI Lili, WANG Yunpeng. The Multi-feature Parameter Classification of Aerosol Based on OMI Remote Sensing Data: A Case Study in Guangdong Province[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(4): 68-75. DOI: 10.6054/j.jscnun.2021060

The Multi-feature Parameter Classification of Aerosol Based on OMI Remote Sensing Data: A Case Study in Guangdong Province

More Information
  • Received Date: December 07, 2020
  • Available Online: September 02, 2021
  • In order to solve the problems of low precision and redundant feature parameters in the process of aerosol classification, several significant aerosol feature parameters were extracted from the OMI (Ozone Monitoring Instrument) remote sensing products and Random Forest (RF) algorithm was used for aerosol type classification and verification. Aerosols of Guangdong Province in 2014 were divided into three types: desert dust (DST), carbonaceous aerosols associated with biomass burning (CRB) and sulfate-based urban-industrial aerosols (SLF). The Random Forest classification results and the importance of feature parameters were analyzed. The spatial distribution of cla-ssification results were compared to that of OMI aerosol type products. The following results are obtained. First, with the RF algorithm, a total precision of over 97% can be reached with a few training samples. Second, calculating the importance of different aerosol feature parameters in RF shows that the most important feature parameters are angstrom exponent, UVAI, RI388, RI354, SSA500 and AAOD500 in turn, indicating that size distribution and absorption ability of aerosols play the key roles. Third, the spatial distribution of three aerosol types shows that sulfate-based urban-industrial aerosols are dominant in the Pearl River Delta. Proportion of biomass burning and desert dust aerosols are highest in the Pearl River Delta and lowest in the eastern and northern Guangdong.
  • [1]
    EALO M, ALASTUEY A, PEREZ N, et al. Impact of aerosol particle sources on optical properties in urban, regional and remote areas in the north-western Mediterranean[J]. Atmospheric Chemistry and Physics, 2018, 18: 1149-1169. doi: 10.5194/acp-18-1149-2018
    [2]
    CHEN Q X, SHEN W X, YUAN Y, et al. Verification of aerosol classification methods through satellite and ground-based mea-surements over Harbin, Northeast China[J]. Atmospheric Research, 2019, 216: 167-175. doi: 10.1016/j.atmosres.2018.09.022
    [3]
    RENARD J B, DULAC F, DURAND P, et al. In situ mea-surements of desert dust particles above the western Mediterranean Sea with the balloon-borne Light Optical Aerosol Counter/sizer (LOAC) during the ChArMEx campaign of summer 2013[J]. Atmospheric Chemistry and Physics, 2018, 18: 3677-3699. doi: 10.5194/acp-18-3677-2018
    [4]
    CRUTZEN P J, ANDREAE M O. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemi-cal cycles[J]. Science, 1990, 250: 1669-1678. doi: 10.1126/science.250.4988.1669
    [5]
    DUBOVIK O, HOLBEN B, ECK T F, et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations[J]. Journal of the Atmospheric Sciences, 2001, 59: 590-608.
    [6]
    HAMILL P, GIORDANO M, WARD C, et al. An AERONET-based aerosol classification using the Mahalanobis distance[J]. Atmospheric Environment, 2016, 140: 213-233. doi: 10.1016/j.atmosenv.2016.06.002
    [7]
    KALAPUREDDY M C R, KASKAOUTIS D G, RAJ P E, et al. Identification of aerosol type over the Arabian Sea in the pre-monsoon season during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB)[J]. Journal of Geophysical Research, 2009, 114: D17203/1-12. http://adsabs.harvard.edu/abs/2009JGRD..11417203K
    [8]
    SREEKANTH V. On the classification and sub-classification of aerosol key types over south central peninsular India: MODIS-OMI algorithm[J]. Science of the Total Environment, 2014, 468/469: 1086-1092. doi: 10.1016/j.scitotenv.2013.09.038
    [9]
    白冰, 张强, 陈旭辉, 等. 中国西北干旱半干旱区气溶胶分类及特征[J]. 中国沙漠, 2019, 39(5): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201905014.htm

    BAI B, ZHANG Q, CHEN X H, et al. Classification and characteristics of aerosols in arid and semi-arid areas of northwest China[J]. Journal of Desert Research, 2019, 39(5): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201905014.htm
    [10]
    KUMAR K R, KANG N, YIN Y. Classification of key aerosol types and their frequency distributions based on satellite remote sensing data at an industrially polluted city in the Yangtze River Delta, China[J]. International Journal of Climatology, 2018, 38: 320-336. doi: 10.1002/joc.5178
    [11]
    CHEN Q X, YUAN Y, SHUAI Y, et al. Graphical aerosol classification method using aerosol relative optical depth[J]. Atmospheric Environment, 2016, 135: 84-91. doi: 10.1016/j.atmosenv.2016.03.061
    [12]
    TORRES O, TANSKANEN A, VEIHELMANN B, et al. Aerosols and surface UV products from Ozone Monitoring Instrument observations: an overview[J]. Journal of Geophysical Research-Atmospheres, 2007, 112: D24S47/1-14. doi: 10.1029/2007JD008809/full
    [13]
    BUCHARD V, DA SILVA A M, COLARCO P R, et al. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis[J]. Atmospheric Chemistry and Physics, 2015, 15: 5743-5760. doi: 10.5194/acp-15-5743-2015
    [14]
    FIELD R D, VAN DER WERF G R, FANIN T, et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Nino-induced drought[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 9204-9209. doi: 10.1073/pnas.1524888113
    [15]
    CHEN J M, LI C L, RISTOVSKI Z, et al. A review of biomass burning: emissions and impacts on air quality, health and climate in China[J]. Science of the Total Environment, 2017, 579: 1000-1034. http://www.sciencedirect.com/science/article/pii/S0048969716324561
    [16]
    ZHENG Y C, LI L L, WANG Y P. An aerosol type classification method based on remote sensing data in Guangdong, China[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Göttingen, Germany: Copernicus Publications, 2019: 239-243.
    [17]
    BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32. doi: 10.1023/A:1010933404324
    [18]
    耿仁方, 付波霖, 蔡江涛, 等. 基于无人机影像和面向对象随机森林算法的岩溶湿地植被识别方法研究[J]. 地球信息科学学报, 2019, 21(8): 1295-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201908016.htm

    GENG R F, FU B L, CAI J T, et al. Object-based karst wetland vegetation classification method using unmanned aerial vehicle images and random forest algorithm[J]. Journal of Geo-information Science, 2019, 21(8): 1295-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201908016.htm
    [19]
    曹爽, 潘锁艳, 管海燕. 机载多光谱LiDAR的随机森林地物分类[J]. 测绘通报, 2019, 11: 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201911016.htm

    CAO S, PAN S Y, GUAN H Y. Random forest-based land-use classification using multispectral LiDAR data[J]. Bulletin of Surveying and Mapping, 2019, 11: 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201911016.htm
    [20]
    马玥, 姜琦刚, 孟治国, 等. 基于随机森林算法的农耕区土地利用分类研究[J]. 农业机械学报, 2016, 47(1): 297-303. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201601040.htm

    MA Y, JIANG Q G, MENG Z G, et al. Classification of land use in farming area based on random forest algorithm[J]. Transactions of the Chinese Society of Agriculture Machinery, 2016, 47(1): 297-303. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201601040.htm
    [21]
    SU H, SHEN W, WANG J, et al. Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests[J]. Forest Ecosystems, 2020, 7: 64/1-20. http://qikan.cqvip.com/Qikan/Article/Detail?id=7103641717
    [22]
    HUNT D A, TABOR K, HEWSON J H, et al. Review of remote sensing methods to map coffee production systems[J]. Remote Sensing, 2020, 12: 2041/1-23. http://www.researchgate.net/publication/342452963_Review_of_Remote_Sensing_Methods_to_Map_Coffee_Production_Systems
    [23]
    李宁, 汪丽娜. 基于随机森林回归算法的用水总量影响因素解析——以广东省为例[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 78-84. doi: 10.6054/j.jscnun.2021012

    LI N, WANG L N. An analysis of the factors in total water consumption based on random forest regression algorithm: a case study of Guangdong Province[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(1): 78-84. doi: 10.6054/j.jscnun.2021012
    [24]
    刘望保, 谢智豪. 位置服务大数据下广州市土地利用类型模拟探讨[J]. 华南师范大学学报(自然科学版), 2019, 51(1): 75-83. doi: 10.6054/j.jscnun.2019013

    LIU W B, XIE Z H. Inferring land use of Guangzhou from big data of location service[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(1): 75-83. doi: 10.6054/j.jscnun.2019013

Catalog

    Article views (507) PDF downloads (57) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return