• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
TANG Xiaoyu, YAN Yalin, LI Tingfeng, ZHU Linlin, LI Ming, CAI Weibo. The Mechanism and Simulation of Suspended Particle Manipulation in a Double Concave Focused Ultrasonic Field[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(4): 17-23. DOI: 10.6054/j.jscnun.2021053
Citation: TANG Xiaoyu, YAN Yalin, LI Tingfeng, ZHU Linlin, LI Ming, CAI Weibo. The Mechanism and Simulation of Suspended Particle Manipulation in a Double Concave Focused Ultrasonic Field[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(4): 17-23. DOI: 10.6054/j.jscnun.2021053

The Mechanism and Simulation of Suspended Particle Manipulation in a Double Concave Focused Ultrasonic Field

More Information
  • Received Date: December 22, 2020
  • Available Online: September 02, 2021
  • In order to improve the suspension ability of focused ultrasonic field and broaden the moving area of suspended particles, the calculation formula of sound pressure in the ultrasonic field and the relation between the delay time of array elements and the focus position in concave spherical array were studied. COMSOL multiphysics was used for simulation verification. By building a levitation device for the concave spherical ultrasonic array, the phase of emitter signal was controlled to realize the movement of suspended particles in the vertical direction. The particle motion trajectory in the experiment was in good agreement with that in the simulation experiment. The results showed that the double concave spherical ultrasonic array had stronger sound pressure and better focusing ability and the motion of the suspended particles in the two-dimensional plane could be realized with phase signal control.
  • [1]
    张泽辉, 刘康祺, 邸文丽, 等. 基于超声悬浮的液滴非接触操控及其动力学[J]. 中国科学: 物理学·力学·天文学, 2020, 50(10): 113-144. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202010012.htm

    ZHAUG Z H, LIU K Q, DI W L, et al. Non-contact droplet manipulation and its dynamics based on acoustic levitation[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2020, 50(10): 113-114. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202010012.htm
    [2]
    臧雨宸. 声辐射力的原理与应用[J]. 邵阳学院学报(自然科学版), 2019, 16(4): 57-62. doi: 10.3969/j.issn.1672-7010.2019.04.009

    ZANG Y C. Principle and applications of acoustic radiation force[J]. Journal of Shaoyang University(Natural Science Edition), 2019, 16(4): 57-62. doi: 10.3969/j.issn.1672-7010.2019.04.009
    [3]
    DING X Y, LIN S S, KIRALY B, et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 190(28): 11105-11109. http://europepmc.org/articles/PMC3396524/
    [4]
    LAURELL T, PETERSON F, NILSSON A. Chip integrated strategies for acoustic separation and manipulation of cells and particles[J]. Chemical Society Reviews, 2007, 36(3): 492-506. doi: 10.1039/B601326K
    [5]
    董瑞玲, 顾大勇, 朱玉兰, 等. 拉曼光谱技术在疟疾检测中的应用[J]. 中国热带医学, 2014, 14(10): 1270-1275. https://www.cnki.com.cn/Article/CJFDTOTAL-RDYX201410043.htm

    DONG R L, GU D Y, ZHU Y L, et al. Application of raman spectroscopy in malaria detection[J]. China Tropical Medicine, 2014, 14(10): 1270-1275. https://www.cnki.com.cn/Article/CJFDTOTAL-RDYX201410043.htm
    [6]
    YADAV S, GUPTA A. Parametric study of driver and reflector of single axis acoustic levitator using finite element method[J]. Acoustical Physics, 2020, 66(3): 242-249. doi: 10.1134/S1063771020030094
    [7]
    李新波, 王英伟, 王宇昆, 等. 凹球面双发射极超声阵列悬浮能力研究[J]. 西安交通大学学报, 2018, 52(11): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201811016.htm

    LI X B, WANG Y W, WANG Y K, et al. Study on the suspension capacity of concave spherical double emitter ultrasonic array[J]. Journal of Xi'an Jiaotong University, 2018, 52(11): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201811016.htm
    [8]
    ANDRAD E, MARCO A, PÉRE Z, et al. Review of progress in acoustic levitation[J]. Brazilian Journal of Phy-sics, 2018, 48(2): 190-213. doi: 10.1007/s13538-017-0552-6
    [9]
    张鹏, 高辉, 宋起超, 等. 基于双反射面声悬浮器的非接触传输方法[J]. 黑龙江工程学院学报(自然科学版), 2020, 34(2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGZ202002002.htm

    ZHANG P, GAO H, SONG Q C, et al. Contactless transportation method based on acoustic levitator with double reflectors[J]. Journal of Heilongjiang Institute of Technology, 2020, 34(2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGZ202002002.htm
    [10]
    OCHIAI Y, HOSHI T, REKIMOTO J. Three-dimensional mid-air Acoustic manipulation by ultrasonic phased Arrays[J]. PloS ONE, 2013, 9(5): e97590/1-10. http://europepmc.org/articles/PMC4029622
    [11]
    张承忠, 叶邦彦, 曹云凤, 等. 小提琴共鸣箱振动特性的有限元仿真与实验研究[J]. 华南师范大学学报(自然科学版), 2014, 46(6): 40-46. http://journal-n.scnu.edu.cn/article/id/3292

    ZHANG C Z, YE B Y, CAO Y F, et al. Research on vibration of violin sounding box with finite element numerical simulation method and experiment[J]. Journal of South China Normal University(Natural Science Edition), 2014, 46(6): 40-46. http://journal-n.scnu.edu.cn/article/id/3292
    [12]
    蒙海英. 基于MATLAB的超声波声场模拟及可视化研究[D]. 大连: 大连理工大学, 2008.

    WENG H Y. Investigation on simulation and visibility of ultrasonic field based on MATLAB[D]. Dalian: Dalian University of Technology, 2008.
    [13]
    庄龙, 吴立群, 杜锡标, 等. 基于超声复合场的空间悬浮微粒任意点输运方法[J]. 中国机械工程, 2015, 26(22): 3040-3045, 3050. doi: 10.3969/j.issn.1004-132X.2015.22.010

    ZHUANG L, WU L Q, DU X B, et al. Approach to arbitrary transportation of suspended particles based on ultrasonic composite field[J]. China Mechanical Engineering, 2015, 26(22): 3040-3045, 3050. doi: 10.3969/j.issn.1004-132X.2015.22.010
    [14]
    范皓然. 基于单轴式超声悬浮系统的复杂声场的构建[D]. 西安: 陕西师范大学, 2017.

    FAN H R. Construction of complex sound field based on uniaxial ultrasonic suspension system[D]. Xi'an: Shanxi Normal University, 2017.
    [15]
    凌浩, 尚禹, 桂志国, 等. 超声驻波悬浮特性仿真研究[J]. 测试技术学报, 2020, 34(4): 311-315. doi: 10.3969/j.issn.1671-7449.2020.04.006

    LING H, SHANG Y, GUI Z G, et al. Simulation study on characteristics of ultrasonic standing wave suspension[J]. Journal of Test and Measurement Technology, 2020, 34(4): 311-315. doi: 10.3969/j.issn.1671-7449.2020.04.006
    [16]
    SUKHANOV D Y, EMELYANOV F S. Three-dimensional acoustic levitation of particles in the field of phased arrays of ultrasonic vibrators[J]. Russian Physics Journal, 2020, 63(1): 258-262.
    [17]
    AYUMU W, KOJI H, YUTAKA A. Contactless fluid manipulation in air: droplet coalescence and active mixing by acoustic levitation[J]. Scientific Reports, 2018, 8(1): 10221-10221. doi: 10.1038/s41598-018-28451-5
    [18]
    金硕, 严琪琪, 李成翊, 等. 驻波声场中悬浮临界密度及稳定性研究[J]. 大学物理, 2020, 39(5): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DXWL202005006.htm

    JING S, YAN Q Q, LI C Y, et al. Study of the critical density and stability of suspension in standing wave sound field[J]. College Physics, 2020, 39(5): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DXWL202005006.htm
    [19]
    MARZO A, BARNES A, DRINKWATER B W. TinyLev: a multi-emitter single-axis acoustic levitator[J]. The Review of Scientific Instruments, 2017, 88(8): 085105/1-6. http://europepmc.org/abstract/MED/28863691

Catalog

    Article views (1208) PDF downloads (113) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return