• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHANG Peng, LI Xinyin, ZENG Yongquan. The Mixture of Fundamental Indexing and Minimum Semi-variance Portfolio Selection[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 93-101. DOI: 10.6054/j.jscnun.2021047
Citation: ZHANG Peng, LI Xinyin, ZENG Yongquan. The Mixture of Fundamental Indexing and Minimum Semi-variance Portfolio Selection[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 93-101. DOI: 10.6054/j.jscnun.2021047

The Mixture of Fundamental Indexing and Minimum Semi-variance Portfolio Selection

More Information
  • Received Date: October 25, 2020
  • Available Online: July 05, 2021
  • In order to overcome the limitation of variance in distinguishing income and loss and solve the problem caused by ignoring the fundamentals in MV model, a mixture of Fundamental Indexing and minimum semi-variance portfolio ("FI-semiv"model), taking into consideration 1- and 2-norm transaction costs respectively and aiming to maximize the expected utility of investors, is proposed and solved with the pivoting algorithm. The model is a convex quadratic programming problem with linear equality and inequality constraints. Based on the "rolling sample" approach, the out-of-sample sharp ratios of different models are compared. It turns out that the sharp ratio of the FI-semiv portfolio has been effectively improved, which means that the portfolio is less risky and more efficient.
  • [1]
    MARKOWITZ H. Portfolio selection[J]. The Journal of Finance, 1952, 7(1): 77-91.
    [2]
    MARKOWITZ H. Portfolio selection: efficient diversification of investments[M]. New York: Wiley, 1959.
    [3]
    OGRYCZAK W, RUSZCZYNSKI A. From stochastic dominance to mean-risk models: semideviations as risk mea-sures[J]. European Journal of Operational Research, 1999, 116(1): 33-50. doi: 10.1016/S0377-2217(98)00167-2
    [4]
    SEYEDHOSSEINI S M, ESFAHANI M J, GHAFFARI M. A novel hybrid algorithm based on a harmony search and artificial bee colony for solving a portfolio optimization problem using a mean-semivariance approach[J]. Journal of Central South University, 2016, 23(1): 181-188. doi: 10.1007/s11771-016-3061-9
    [5]
    于孝建, 王秀花, 徐维军. 基于滚动经济回撤约束和下半方差的最优投资组合策略[J]. 系统工程理论与实践, 2018, 38(3): 545-555. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201803001.htm

    YU X J, WANG X H, XU W J. Optimal portfolio strategy under rolling economic drawdown constraints with lower semi-variance[J]. Systems Engineering Theory & Pratice, 2018, 38(3): 545-555. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201803001.htm
    [6]
    FAMA E F. Efficient capital markets: a review of theory and empirical work[J]. The Journal of Finance, 1970, 25(2): 283-417. doi: 10.1111/j.1540-6261.1970.tb00518.x/abstract
    [7]
    ARNOTT R D, HSU J, MOORE P. Fundamental indexation[J]. Financial Analysts Journal, 2005, 61(2): 83-99. doi: 10.2469/faj.v61.n2.2718
    [8]
    BASU A K, FORBES B. Does fundamental indexation lead to better risk-adjusted returns? New evidence from Australian securities exchange[J]. Accounting and Finance, 2015, 54(3): 699-728. doi: 10.1111/acfi.12016
    [9]
    RUIZ F, MARTÍNEZ G, RUIZ R. Evaluation of the fundamental index's performance in the Spanish capital markets from a passive investor's perspective[C]//SETHI S P, BOGATAJ M, ROS-MCDONNELL L. Industrial Enginee-ring: Innovative Networks. London: Springer, 2012: 21-28.
    [10]
    CHANG C E, KRUEGER T M. Do fundamental index funds outperform traditional index funds?[J]. Journal of Financial Planning, 2015, 28(12): 40-48.
    [11]
    BUSER S A. On the optimal mix of active and passive investments[J]. Journal of Portfolio Management, 2015, 41(4): 91-96. doi: 10.3905/jpm.2015.41.4.091
    [12]
    DEMIGUEL V, GARLAPPI L, UPPAL R. Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy?[J]. The Review of Financial Studies, 2009, 22(5): 1915-1953. doi: 10.1093/rfs/hhm075
    [13]
    PYSARENKO S, ALEXEEV V, TAPON F. Predictive blends: Fundamental Indexing meets Markowitz[J]. Journal of Banking and Finance, 2019, 100: 28-42. doi: 10.1016/j.jbankfin.2018.12.016
    [14]
    MEI X, NOGALES F J. Portfolio selection with proportional transaction costs and predictability[J]. Journal of Banking & Finance, 2018, 94: 131-151. http://www.sciencedirect.com/science/article/pii/S0378426618301602
    [15]
    HAUTSCH N, VOIGT S. Large-scale portfolio allocation under transaction costs and model uncertainty[J]. Journal of Econometrics, 2019, 212(1): 221-240. doi: 10.1016/j.jeconom.2019.04.028
    [16]
    MEI X, DEMIGUEL V, NOGALES F J. Multiperiod portfolio optimization with multiple risky assets and general transaction costs[J]. Journal of Banking & Finance, 2016, 69: 108-120. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2295345
    [17]
    OLIVARES-NADAL A V, DEMIGUEL V. Technical note-a robust perspective on transaction costs in portfolio optimization[J]. Operations Research, 2018, 66(3): 733-739. doi: 10.1287/opre.2017.1699
    [18]
    RAPACH D E, WOHAR M E. In-sample vs. out-of-sample tests of stock return predictability in the context of data mining[J]. Journal of Empirical Finance, 2006, 13(2): 231-247. doi: 10.1016/j.jempfin.2005.08.001
    [19]
    DEMIGUEL V, MARTIN-UTRERA A, NOGALES F J. Size matters: optimal calibration of shrinkage estimators for portfolio selection[J]. Journal of Banking & Finance, 2013, 37(8): 3018-3034. http://www.sciencedirect.com/science/article/pii/S0378426613002161
    [20]
    XU G, LIN B. Structural changes and out-of-sample prediction of realized range-based variance in the stock market[J]. Physica A: Statistical Mechanics and its Applications, 2018, 494: 27-39. doi: 10.1016/j.physa.2017.12.004
    [21]
    张鹏. 可计算的投资组合模型与优化方法研究[D]. 武汉: 华中科技大学, 2006.

    ZHANG P. The studying on the models and optimal methods of the computable portfolio selection[D]. Wuhan: Huazhong University of Science and Technology, 2006.
    [22]
    WALKSHÄUSL C, LOBE S. Fundamental indexing around the world[J]. Review of Financial Economics, 2010, 19(3): 117-127. doi: 10.1016/j.rfe.2010.02.001
    [23]
    张鹏. 不允许卖空情况下均值-方差和均值-VaR投资组合比较研究[J]. 中国管理科学, 2008, 16(4): 30-35. doi: 10.3321/j.issn:1003-207X.2008.04.005

    ZHANG P. The comparison between mean-variance and mean-VaR portfolio models without short sales[J]. Chinese Journal of Management Science, 2008, 16(4): 30-35. doi: 10.3321/j.issn:1003-207X.2008.04.005

Catalog

    Article views (533) PDF downloads (72) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return