Citation: | CHEN Jing, CHEN Yun, Reyimaiayi·ABUDUAINI, FANG Zhigang, Kaidiriye·YUSUPU, MA Liufeng. A Transcriptomic Analysis of Early Adventitious Roots of Rosa chinensis Cuttings and Key Genes Screening[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 54-62. DOI: 10.6054/j.jscnun.2021044 |
[1] |
李焕勇, 刘涛, 张华新. 植物扦插生根机理研究进展[J]. 世界林业研究, 2014, 27(1): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SJLY201401005.htm
LI H Y, LIU T, ZHANG H X. Research progress on rooting mechanism of plant cuttings[J]. World Forestry Research, 2014, 27(1): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SJLY201401005.htm
|
[2] |
AHKAMI A, SCHOLZ U, STEUERNAGEL B, et al. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in petunia hybrida[J]. PLoS One, 2017, 9(6): 1-14. http://www.ncbi.nlm.nih.gov/pubmed/24978694
|
[3] |
BAESSO B, TERZAGHI M, CHIATANTE D, et al. WOX genes expression during the formation of new lateral roots from secondary structures in Populus nigra (L.) taproot[J]. Scientific Reports, 2020, 10(1): 18890/1-6.
|
[4] |
费璇, 周安佩, 纵丹, 等. 生根相关基因在滇杨和毛白杨插穗中的表达分析[J]. 分子植物育种, 2019, 17(23): 7714-7720. https://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201923014.htm
FEI X, ZHOU A P, ZONG D, et al. Expression analysis of rooting-related genes in Populus yunnanensis and Populus tomentosa[J]. Molecular Plant Breeding, 2019, 17(23): 7714-7720. https://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201923014.htm
|
[5] |
VILATAMARTI C, SANCHEZ-GARCIA A B, VILLANOVA J, et al. Gene expression profiling during adventitious root formation in carnation stem cuttings[J]. BMC Genomics, 2015, 16(1): 1-18. doi: 10.1186/1471-2164-16-1
|
[6] |
RAYMOND O, GOUZY J, JUST J, et al. The Rosa genome provides new insights into the domestication of modern roses[J]. Nature Genetics, 2018, 50(6): 772-777. doi: 10.1038/s41588-018-0110-3
|
[7] |
王焕, 郑日如, 曹声海, 等. 月季花瓣特异表达启动子的筛选和鉴定[J]. 园艺学报, 2020, 47(4): 686-698. https://www.cnki.com.cn/Article/CJFDTOTAL-YYXB202004008.htm
WANG H, ZHENG R R, CAO S H, et al. Selection and identification of petal-specific promoter in rose[J]. Acta Horticulturae Sinica, 2020, 47(4): 686-698. https://www.cnki.com.cn/Article/CJFDTOTAL-YYXB202004008.htm
|
[8] |
热依麦阿依·阿布都艾尼, 陈静, 陈芸, 等. 盐胁迫下棉花根系的转录组分析及耐盐基因筛选[J]. 华南师范大学学报(自然科学版), 2020, 52(5): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202005011.htm
ABUDUAINI R, CHEN J, CHEN Y, et al. Transcriptome analysis and salt tolerance gene screening of cotton root under salt stress[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(5): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202005011.htm
|
[9] |
ANDERS S, PYI P T, HUBER W. HTSeq: a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015, 31(2): 166-169. doi: 10.1093/bioinformatics/btu638
|
[10] |
GODIA M, MAYER F, NAFISSI J, et al. A technical assessment of the porcine ejaculated spermatozoa for a sperm-specific RNA-seq analysis[J]. Systems Biology in Reproductive Medicine, 2018, 64(4): 291-303. doi: 10.1080/19396368.2018.1464610
|
[11] |
ANNA K, REKHA V, CELENZA J, et al. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(5): 2379-2384. doi: 10.1073/pnas.040569997
|
[12] |
FELDMANN K. Cytochrome P450s as genes for crop improvement[J]. Current Opinion in Plant Biology, 2001, 4(2): 162-167. doi: 10.1016/S1369-5266(00)00154-0
|
[13] |
张孝廉, 张吉顺, 雷波, 等. 植物MLO蛋白研究进展[J]. 植物生理学报, 2018, 54(7): 1159-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201807002.htm
ZHANG X L, ZHANG J S, LEI B, et al. Research progress of plant MLO protein[J]. Plant Physiology Journal, 2018, 54(7): 1159-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201807002.htm
|
[14] |
JIANG P, CHEN H Y, WILDE H D. Reduction of MLO1 expression in petunia increases resistance to powdery mildew[J]. Scientia Horticulturae, 2016, 201(2): 225-229. http://www.sciencedirect.com/science/article/pii/S0304423816300541
|
[15] |
牛义岭, 姜秀明, 许向阳. 植物转录因子MYB基因家族的研究进展[J]. 分子植物育种, 2016(8): 2050-2059. https://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201608024.htm
NIU Y L, JIANG X M, XU X Y. Reaserch advances on transcription factor MYB gene family in plant[J]. Molecular Plant Breeding, 2016(8): 2050-2059. https://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201608024.htm
|
[16] |
DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. Journal of Integrative Plant Biology, 2006, 46(4): 533-548. doi: 10.1111/jipb.13054/pdf
|
[17] |
张清凤. 果胶甲基酯酶在油菜素内酯调节拟南芥生长发育中的作用[D]. 兰州: 兰州大学, 2017.
ZHANG Q F. Roles of pectin methylesterase in brassinosteroid regulations of growth and development in Arabidopsis[D]. Lanzhou: Lanzhou University, 2017.
|
[18] |
BERNARD H, GIDEON D. Structural and sequence-based classification of glycoside hydrolases[J]. Current Opinion in Structural Biology, 1997, 7(5): 637-644. doi: 10.1016/S0959-440X(97)80072-3
|
[19] |
卢超. 西洋参两个UDP-葡萄糖基转移酶基因及其启动子的克隆鉴定与功能分析[D]. 长春: 吉林大学, 2018.
LU C. Cloning, isolation, identification and functional analysis of two UDP-glycosyltransferase genesand their promoters in Panax quinquefolius L. [D]. Changchun: Jilin University, 2018.
|
[20] |
郭素娟. 林木扦插生根的解剖学及生理学研究进展[J]. 北京林业大学学报, 1997(4): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY704.010.htm
GUO S J. Advances in anatomy and physiology of tree cutting rooting[J]. Journal of Beijing Forestry University, 1997(4): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY704.010.htm
|
[21] |
SHIVANI S, ISHA S, NAVDEEP K, et al. Auxin: a master regulator in plant root development[J]. Plant Cell Reports, 2013, 32(6): 741-757. doi: 10.1007/s00299-013-1430-5
|
[22] |
MARASCHIN F S, MEMELINK J, OFFRINGA R. Auxin-induced, SCF(TIR1)-mediatedpoly-ubiquitination marks AUX/IAA proteins for degradation[J]. The Plant Journal, 2009, 59(1): 100-109. doi: 10.1111/j.1365-313X.2009.03854.x
|
[23] |
XIE Q J, JEMMA E, PANG X C, et al. Exogenous application of abscisic acid to shoots promotes primary root cell division and elongation[J]. Plant Science, 2020, 292(3): 110385/1-15. http://www.sciencedirect.com/science/article/pii/S0168945219315584
|
[24] |
MICHAL A L, SIGAL S D. Growth models from a brassinosteroid perspective[J]. Current Opinion in Plant Biology, 2020, 53(2): 90-97. http://www.sciencedirect.com/science/article/pii/S1369526619300998
|