• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHEN Jing, CHEN Yun, Reyimaiayi·ABUDUAINI, FANG Zhigang, Kaidiriye·YUSUPU, MA Liufeng. A Transcriptomic Analysis of Early Adventitious Roots of Rosa chinensis Cuttings and Key Genes Screening[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 54-62. DOI: 10.6054/j.jscnun.2021044
Citation: CHEN Jing, CHEN Yun, Reyimaiayi·ABUDUAINI, FANG Zhigang, Kaidiriye·YUSUPU, MA Liufeng. A Transcriptomic Analysis of Early Adventitious Roots of Rosa chinensis Cuttings and Key Genes Screening[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 54-62. DOI: 10.6054/j.jscnun.2021044

A Transcriptomic Analysis of Early Adventitious Roots of Rosa chinensis Cuttings and Key Genes Screening

More Information
  • Received Date: December 18, 2020
  • Available Online: July 05, 2021
  • In order to study the key gene regulation mechanism of Rosa chinensis cuttings in the process of adventitious root formation, the Illumina platform sequencing technology was used to analyze the three developmental stages of cutting rose cultivar 'Carola', i.e., adventitious root initiation period, callus formation period and adventitious root elongation period. A transcriptome sequencing analysis was performed on the 1 cm cortex at the base of cuttings. The results showed that at the three stages of adventitious root formation of rose cuttings, a total of 5 033 differentially expressed genes were screened between the adventitious root initiation stage and the callus formation stage, of which 2 313 genes were up-regulated and 2 720 genes were down-regulated; a total of 1 865 differentially expressed genes were screened between the callus formation period and adventitious root elongation period, of which 1 332 genes were up-regulated and 533 genes were down-regulated. The GO functional analysis showed that differentially expressed genes were mainly involved in the 3 major functions of biological process, molecule function and cell composition. The KEGG enrichment analysis showed that the differentially expressed genes were mainly involved in the metabolic pathways of plant hormone signal transduction, the synthesis of secondary metabolites and the synthesis of carbohydrates. The changes in the transcription levels of the 8 genes that exhibited the most significant differences in the rooting process were detected with real-time fluorescent quantitative PCR. The results showed that the verification results of real-time fluorescent quantitative PCR were basically consistent with the results of transcriptome sequencing.
  • [1]
    李焕勇, 刘涛, 张华新. 植物扦插生根机理研究进展[J]. 世界林业研究, 2014, 27(1): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SJLY201401005.htm

    LI H Y, LIU T, ZHANG H X. Research progress on rooting mechanism of plant cuttings[J]. World Forestry Research, 2014, 27(1): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SJLY201401005.htm
    [2]
    AHKAMI A, SCHOLZ U, STEUERNAGEL B, et al. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in petunia hybrida[J]. PLoS One, 2017, 9(6): 1-14. http://www.ncbi.nlm.nih.gov/pubmed/24978694
    [3]
    BAESSO B, TERZAGHI M, CHIATANTE D, et al. WOX genes expression during the formation of new lateral roots from secondary structures in Populus nigra (L.) taproot[J]. Scientific Reports, 2020, 10(1): 18890/1-6.
    [4]
    费璇, 周安佩, 纵丹, 等. 生根相关基因在滇杨和毛白杨插穗中的表达分析[J]. 分子植物育种, 2019, 17(23): 7714-7720. https://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201923014.htm

    FEI X, ZHOU A P, ZONG D, et al. Expression analysis of rooting-related genes in Populus yunnanensis and Populus tomentosa[J]. Molecular Plant Breeding, 2019, 17(23): 7714-7720. https://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201923014.htm
    [5]
    VILATAMARTI C, SANCHEZ-GARCIA A B, VILLANOVA J, et al. Gene expression profiling during adventitious root formation in carnation stem cuttings[J]. BMC Genomics, 2015, 16(1): 1-18. doi: 10.1186/1471-2164-16-1
    [6]
    RAYMOND O, GOUZY J, JUST J, et al. The Rosa genome provides new insights into the domestication of modern roses[J]. Nature Genetics, 2018, 50(6): 772-777. doi: 10.1038/s41588-018-0110-3
    [7]
    王焕, 郑日如, 曹声海, 等. 月季花瓣特异表达启动子的筛选和鉴定[J]. 园艺学报, 2020, 47(4): 686-698. https://www.cnki.com.cn/Article/CJFDTOTAL-YYXB202004008.htm

    WANG H, ZHENG R R, CAO S H, et al. Selection and identification of petal-specific promoter in rose[J]. Acta Horticulturae Sinica, 2020, 47(4): 686-698. https://www.cnki.com.cn/Article/CJFDTOTAL-YYXB202004008.htm
    [8]
    热依麦阿依·阿布都艾尼, 陈静, 陈芸, 等. 盐胁迫下棉花根系的转录组分析及耐盐基因筛选[J]. 华南师范大学学报(自然科学版), 2020, 52(5): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202005011.htm

    ABUDUAINI R, CHEN J, CHEN Y, et al. Transcriptome analysis and salt tolerance gene screening of cotton root under salt stress[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(5): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202005011.htm
    [9]
    ANDERS S, PYI P T, HUBER W. HTSeq: a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015, 31(2): 166-169. doi: 10.1093/bioinformatics/btu638
    [10]
    GODIA M, MAYER F, NAFISSI J, et al. A technical assessment of the porcine ejaculated spermatozoa for a sperm-specific RNA-seq analysis[J]. Systems Biology in Reproductive Medicine, 2018, 64(4): 291-303. doi: 10.1080/19396368.2018.1464610
    [11]
    ANNA K, REKHA V, CELENZA J, et al. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(5): 2379-2384. doi: 10.1073/pnas.040569997
    [12]
    FELDMANN K. Cytochrome P450s as genes for crop improvement[J]. Current Opinion in Plant Biology, 2001, 4(2): 162-167. doi: 10.1016/S1369-5266(00)00154-0
    [13]
    张孝廉, 张吉顺, 雷波, 等. 植物MLO蛋白研究进展[J]. 植物生理学报, 2018, 54(7): 1159-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201807002.htm

    ZHANG X L, ZHANG J S, LEI B, et al. Research progress of plant MLO protein[J]. Plant Physiology Journal, 2018, 54(7): 1159-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201807002.htm
    [14]
    JIANG P, CHEN H Y, WILDE H D. Reduction of MLO1 expression in petunia increases resistance to powdery mildew[J]. Scientia Horticulturae, 2016, 201(2): 225-229. http://www.sciencedirect.com/science/article/pii/S0304423816300541
    [15]
    牛义岭, 姜秀明, 许向阳. 植物转录因子MYB基因家族的研究进展[J]. 分子植物育种, 2016(8): 2050-2059. https://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201608024.htm

    NIU Y L, JIANG X M, XU X Y. Reaserch advances on transcription factor MYB gene family in plant[J]. Molecular Plant Breeding, 2016(8): 2050-2059. https://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201608024.htm
    [16]
    DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. Journal of Integrative Plant Biology, 2006, 46(4): 533-548. doi: 10.1111/jipb.13054/pdf
    [17]
    张清凤. 果胶甲基酯酶在油菜素内酯调节拟南芥生长发育中的作用[D]. 兰州: 兰州大学, 2017.

    ZHANG Q F. Roles of pectin methylesterase in brassinosteroid regulations of growth and development in Arabidopsis[D]. Lanzhou: Lanzhou University, 2017.
    [18]
    BERNARD H, GIDEON D. Structural and sequence-based classification of glycoside hydrolases[J]. Current Opinion in Structural Biology, 1997, 7(5): 637-644. doi: 10.1016/S0959-440X(97)80072-3
    [19]
    卢超. 西洋参两个UDP-葡萄糖基转移酶基因及其启动子的克隆鉴定与功能分析[D]. 长春: 吉林大学, 2018.

    LU C. Cloning, isolation, identification and functional analysis of two UDP-glycosyltransferase genesand their promoters in Panax quinquefolius L. [D]. Changchun: Jilin University, 2018.
    [20]
    郭素娟. 林木扦插生根的解剖学及生理学研究进展[J]. 北京林业大学学报, 1997(4): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY704.010.htm

    GUO S J. Advances in anatomy and physiology of tree cutting rooting[J]. Journal of Beijing Forestry University, 1997(4): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY704.010.htm
    [21]
    SHIVANI S, ISHA S, NAVDEEP K, et al. Auxin: a master regulator in plant root development[J]. Plant Cell Reports, 2013, 32(6): 741-757. doi: 10.1007/s00299-013-1430-5
    [22]
    MARASCHIN F S, MEMELINK J, OFFRINGA R. Auxin-induced, SCF(TIR1)-mediatedpoly-ubiquitination marks AUX/IAA proteins for degradation[J]. The Plant Journal, 2009, 59(1): 100-109. doi: 10.1111/j.1365-313X.2009.03854.x
    [23]
    XIE Q J, JEMMA E, PANG X C, et al. Exogenous application of abscisic acid to shoots promotes primary root cell division and elongation[J]. Plant Science, 2020, 292(3): 110385/1-15. http://www.sciencedirect.com/science/article/pii/S0168945219315584
    [24]
    MICHAL A L, SIGAL S D. Growth models from a brassinosteroid perspective[J]. Current Opinion in Plant Biology, 2020, 53(2): 90-97. http://www.sciencedirect.com/science/article/pii/S1369526619300998
  • Cited by

    Periodical cited type(3)

    1. 苏丹,明银安,陈琳,李阳,文志潘,王营茹. 喹诺酮类抗生素的检测和吸附处理研究进展. 净水技术. 2023(05): 5-12+177 .
    2. 陈金垒,王嘉豪,黄雪君,苏善煜,龚佳昕. 纳米矿晶对氧氟沙星的吸附性能研究. 山东化工. 2022(11): 210-212 .
    3. 杜悦矜,曾丽璇,黄家全,李美慧. 天然沸石对水中左氧氟沙星的吸附及其影响因素. 华南师范大学学报(自然科学版). 2020(06): 39-44 .

    Other cited types(5)

Catalog

    Article views (506) PDF downloads (81) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return