Citation: | LI Yaping, SUN Xianglin, CHEN Xiao, LIAO Yuxin, LI Xin, TANG Yiming, LI Laisheng. The Photoelectrocatalytic Degradation of Tetrabromobisphenol A with Persulfate-enhanced ZnO@N, C-Co3O4[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 43-53. DOI: 10.6054/j.jscnun.2021042 |
[1] |
ANTONIOU M G, CRUZ A A D L, DIONYSIOU D D. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e transfer mechanisms[J]. Applied Catalysis B: Environmental, 2010, 96(3/4): 290-298. http://www.sciencedirect.com/science/article/pii/s092633731000069x
|
[2] |
ZHAO Q X, MAO Q M, ZHOU Y Y, et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: a review on heterogeneous catalysts and applications[J]. Chemosphere, 2017, 189: 224-238. doi: 10.1016/j.chemosphere.2017.09.042
|
[3] |
HORI H, NAGAOKA Y, MURAYAMA M, et al. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water[J]. Environmental Science & Technology, 2008, 42(19): 7438-7843. http://europepmc.org/abstract/MED/18939583
|
[4] |
YANG Q J, CHOI H, CHEN Y J, et al. Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2, 4-dichlorophenol in water: the effect of support, cobalt precursor, and UV radiation[J]. Applied Catalysis B: Environmental, 2008, 77(3/4): 300-307. http://www.sciencedirect.com/science/article/pii/S092633730700224X
|
[5] |
WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
|
[6] |
HU P D, LONG M. Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications[J]. Applied Catalysis B: Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024
|
[7] |
MENG X C, ZHANG Z S, LI X G. Synergetic photoelectrocatalytic reactors for environmental remediation: a review[J]. Journal of Photochemistry & Photobiology C: Photochemistry Reviews, 2015, 24: 83-101. http://smartsearch.nstl.gov.cn/paper_detail.html?id=885d3e890f951ffa7cdfc40838e586ad
|
[8] |
DAGHRIR R, DROGUI P, ROBERT D. Photoelectrocatalytic technologies for environmental applications[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 238: 41-52. doi: 10.1016/j.jphotochem.2012.04.009
|
[9] |
DONG L, XU T, CHEN W, et al. Synergistic multiple active species for the photocatalytic degradation of contaminants by imidazole-modified g-C3N4 coordination with iron phthalocyanine in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2019, 357: 198-208. doi: 10.1016/j.cej.2018.09.094
|
[10] |
ZHOU J B, LIU W, CAI W Q. The synergistic effect of Ag/AgCl@ZIF-8 modified g-C3N4 composite and peroxymonosulfate for the enhanced visible-light photocatalytic degradation of levofloxacin[J]. Science of the Total Environment, 2019, 696: 133962/1-13. http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiA5NjlmNTEwYzk2NjRjNDU4YjM0MTYzMmY0Njc1NDdhYxoId3VtZHZ3OHI%3D
|
[11] |
XIE Y B, LI X Z. Degradation of bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation[J]. Journal of Hazardous Materials, 2006, 138(3): 526-533. doi: 10.1016/j.jhazmat.2006.05.074
|
[12] |
ZHOU Q X, XING A, LI J, et al. Synergistic enhancement in photoelectrocatalytic degradation of bisphenol A by CeO2 and reduced graphene oxide co-modified TiO2 nanotube arrays in combination with Fenton oxidation[J]. Electrochimica Acta, 2016, 209: 379-388. doi: 10.1016/j.electacta.2016.05.094
|
[13] |
BESSEGATO G G, CARDOSO J C, SILVA B F D, et al. Combination of photoelectrocatalysis and ozonation: a novel and powerful approach applied in Acid Yellow 1 mineralization[J]. Applied Catalysis B: Environmental, 2016, 180: 161-168. doi: 10.1016/j.apcatb.2015.06.013
|
[14] |
WANG K Y, LIANG G Z, WAQAS M, et al. Peroxymonosulfate enhanced photoelectrocatalytic degradation of ofloxacin using an easily coated cathode[J]. Separation and Purification Technology, 2019, 236: 116301/1-9. http://www.sciencedirect.com/science/article/pii/S1383586619337360
|
[15] |
BACHA A U R, NABI L, CHENG H Y, et al. Photoelectrocatalytic degradation of endocrine-disruptor bisphenol A with significantly activated peroxymonosulfate by Co-BiVO4 photoanode[J]. Chemical Engineering Journal, 2020, 389: 124482/1-8.
|
[16] |
ZHANG M M, GONG Y, MA N. Promoted Photoelectrocatalytic degradation of BPA with peroxymonosulfate on a MnFe2O4 modified carbon paper cathode[J]. Chemical Engineering Journal, 2020, 399: 125088/1-11. http://www.sciencedirect.com/science/article/pii/S1385894720310809
|
[17] |
LIU S S, ZHAO X, WANG Y B, et al. Peroxymonosulfate enhanced photoelectrocatalytic degradation of phenol activated by Co3O4 loaded carbon fiber cathode[J]. Journal of Catalysis, 2017, 355: 167-175. doi: 10.1016/j.jcat.2017.09.016
|
[18] |
TANG Y M, ZHENG Z X, SUN X L, et al. Ternary CdS-MoS2 coated ZnO nanobrush photoelectrode for one-dimensional acceleration of charge separation upon visible light illumination[J]. Chemical Engineering Journal, 2019, 368: 448-458. doi: 10.1016/j.cej.2019.02.166
|
[19] |
SHARMA P K, SINGH V V, PANDEY L K, et al. Photoelectrocatalytic degradation of vesicant agent using Eu/ZnO/PPy nanocomposite[J]. Environmental Pollution, 2019, 246: 491-500. doi: 10.1016/j.envpol.2018.12.036
|
[20] |
宋昆朋, 王银杰, 方祝青, 等. ZIF-67/聚磷腈复合微球的可控制备及表征[J]. 中国塑料, 2021, 35(1): 1-7.
SONG K P, WANG Y J, FANG Z Q, et al. Controlled preparation and characterization of ZIF-67/polyphosphonitrile composite microspheres[J]. China Plastic, 2021, 35(1): 1-7.
|
[21] |
程远, 李志达, 吴红军. 沸石咪唑酯类骨架材料及其衍生碳材料的制备及性能表征[J]. 化工新型材料, 2021, 49(1): 90-94;98.
CHENG Y, LI Z D, WU H J. Preparation and characterization of zeolite imidazole-ester framework materials and their derived carbon materials[J]. New Chemical Materials, 201, 49(1): 90-94;98.
|
[22] |
庄晓利, 韩超, 张晨, 等. 基于ZIF-67的Co3O4/C修饰电极制备及对多巴胺传感性能研究[J/OL]. 分析试验室, 2021, 40(3): 265-269.
ZHUANG X L, HAN C, ZHANG C, et al. Preparation of Co3O4/C Modified Electrode Based on ZIF-67 and Its Sensing Performance for Dopamine[J/OL]. Analysis Laboratory, 2021, 40(3): 265-269.
|
[23] |
CHEN Y, WANG L, GAO R J, et al. Polarization-Enhanced direct Z-scheme ZnO-WO3-x nanorod arrays for efficient piezoelectric-photoelectrochemical water Splitting[J]. Applied Catalysis B: Environmental, 2019, 259: 118079/1-9. http://www.sciencedirect.com/science/article/pii/S0926337319308264
|
[24] |
LIU X J, PAN L K, ZHAO Q F, et al. UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(Ⅵ)[J]. Chemical Engineering Journal, 2012, 183: 238-243. doi: 10.1016/j.cej.2011.12.068
|
[25] |
YAO M S, TANG W X, WANG G E, et al. MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance[J]. Advanced Materials, 2016, 28: 5229-5234. doi: 10.1002/adma.201506457
|
[26] |
JIA G R, LIU L L, ZHANG L, et al. 1D alignment of ZnO@ZIF-8/67 nanorod arrays for visible-light-driven photoelectrochemical water splitting[J]. Applied Surface Science, 2018, 448: 254-260. doi: 10.1016/j.apsusc.2018.04.102
|
[27] |
XIAO H, LIU S T, SHI L L, et al. ZIF-derived wrinkled Co3O4 polyhedra supported on 3D macroporous carbon sponge for supercapacitor electrode[J]. Ceramics International, 2019, 45: 14634-14641. doi: 10.1016/j.ceramint.2019.04.182
|
[28] |
BAI Y R, DONG J P, HOU Y Q, et al. Co3O4@PC derived from ZIF-67 as an efficient catalyst for the selective catalytic reduction of NO with NH3 at low temperature[J]. Chemical Engineering Journal, 2018, 361: 703-712. http://www.sciencedirect.com/science/article/pii/S138589471832597X
|
[29] |
LI Y Y, LI K, LUO Y Y, et al. Synthesis of Co3O4/ZnO nano-heterojunctions by one-off processing ZIF-8@ZIF-67 and their gas-sensing performances for trimethylamine[J]. Sensors and Actuators B: Chemical, 2020, 308: 127657/1-9.
|
[30] |
HUANG S L, HE B, YAN X L, et al. Hierarchical ZnO/Si nanowire arrays as an effective substrate for surface-enhanced Raman scattering application[J]. Sensors and Actuators B: Chemical, 2018, 273: 48-55. doi: 10.1016/j.snb.2018.06.003
|
[31] |
WANG C, LUO S Y, LIU C Y, et al. Photocatalytic Performance of single crystal ZnO nanorods and ZnO nanorods films under natural sunlight[J]. Inorganic Chemistry Communications, 2020, 114: 107842/1-7. http://www.sciencedirect.com/science/article/pii/S1387700320300769
|
[32] |
LORITE I, ROMERO J J, FEMANDEZ J F. Effects of the agglomeration state on the Raman properties of Co3O4 nanoparticles[J]. Journal of Raman Spectroscopy, 2012, 43(10): 1443-1448. doi: 10.1002/jrs.4098
|
[33] |
LIANG Y T, VIJAYAN B K, GRAY K A, et al. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production[J]. Nano Letters, 2011, 11(7): 2865-2870. doi: 10.1021/nl2012906
|
[34] |
ZHOU J, ZHOU A W, SHU L, et al. Cellular heterojunctions fabricated through the sulfurization of MOFs onto ZnO for high-efficient photoelectrochemical water oxidation[J]. Applied Catalysis B: Environmental, 2018, 226: 421-428. doi: 10.1016/j.apcatb.2017.12.065
|
[35] |
REDA G M, FAN H Q, TIAN H L. Room-temperature solid state synthesis of Co3O4/ZnO p-n heterostructure and its photocatalytic activity[J]. Advanced Powder Technology, 2017, 28: 953-963. doi: 10.1016/j.apt.2016.12.025
|
[36] |
GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review[J]. Chemical Engineering Journal, 2016, 310: 307-315.
|