• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LI Yaping, SUN Xianglin, CHEN Xiao, LIAO Yuxin, LI Xin, TANG Yiming, LI Laisheng. The Photoelectrocatalytic Degradation of Tetrabromobisphenol A with Persulfate-enhanced ZnO@N, C-Co3O4[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 43-53. DOI: 10.6054/j.jscnun.2021042
Citation: LI Yaping, SUN Xianglin, CHEN Xiao, LIAO Yuxin, LI Xin, TANG Yiming, LI Laisheng. The Photoelectrocatalytic Degradation of Tetrabromobisphenol A with Persulfate-enhanced ZnO@N, C-Co3O4[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 43-53. DOI: 10.6054/j.jscnun.2021042

The Photoelectrocatalytic Degradation of Tetrabromobisphenol A with Persulfate-enhanced ZnO@N, C-Co3O4

More Information
  • Received Date: January 22, 2021
  • Available Online: July 05, 2021
  • The persulfate activation technology, as one of the advanced oxidation technologies, can significantly improve the performance of materials degradating pollutants when coupled with photocatalysis. ZnO@N, C-Co3O4 was fabricated from ZIF-67/8 through hydrothermal method. The optical absorption range of ZnO was expanded to the visible light region and the recombination of photogenerated carriers was effectively inhibited. The chemical composition, morphology and light absorption properties of the composite film electrode were characterized, and the photoelectrochemical properties were degradation studied. The highest rate of degrading Tetrabromobisphenol A(TBBPA) from the thin film electrode in the persulfate-enhanced photocatalytic system was 97.2%, which indicated that the coupling of the persulfate activation technology and photocatalysis significantly enhanced the efficiency of catalytic degradation of TBBPA from ZnO@N, C-Co3O4. The mechanism of photoelectrocatalytic degradation of TBBPA assisted with persulfate was studied. Sulphate radical and hydroxyl radical were the main active species in the system.
  • [1]
    ANTONIOU M G, CRUZ A A D L, DIONYSIOU D D. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e transfer mechanisms[J]. Applied Catalysis B: Environmental, 2010, 96(3/4): 290-298. http://www.sciencedirect.com/science/article/pii/s092633731000069x
    [2]
    ZHAO Q X, MAO Q M, ZHOU Y Y, et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: a review on heterogeneous catalysts and applications[J]. Chemosphere, 2017, 189: 224-238. doi: 10.1016/j.chemosphere.2017.09.042
    [3]
    HORI H, NAGAOKA Y, MURAYAMA M, et al. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water[J]. Environmental Science & Technology, 2008, 42(19): 7438-7843. http://europepmc.org/abstract/MED/18939583
    [4]
    YANG Q J, CHOI H, CHEN Y J, et al. Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2, 4-dichlorophenol in water: the effect of support, cobalt precursor, and UV radiation[J]. Applied Catalysis B: Environmental, 2008, 77(3/4): 300-307. http://www.sciencedirect.com/science/article/pii/S092633730700224X
    [5]
    WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
    [6]
    HU P D, LONG M. Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications[J]. Applied Catalysis B: Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024
    [7]
    MENG X C, ZHANG Z S, LI X G. Synergetic photoelectrocatalytic reactors for environmental remediation: a review[J]. Journal of Photochemistry & Photobiology C: Photochemistry Reviews, 2015, 24: 83-101. http://smartsearch.nstl.gov.cn/paper_detail.html?id=885d3e890f951ffa7cdfc40838e586ad
    [8]
    DAGHRIR R, DROGUI P, ROBERT D. Photoelectrocatalytic technologies for environmental applications[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 238: 41-52. doi: 10.1016/j.jphotochem.2012.04.009
    [9]
    DONG L, XU T, CHEN W, et al. Synergistic multiple active species for the photocatalytic degradation of contaminants by imidazole-modified g-C3N4 coordination with iron phthalocyanine in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2019, 357: 198-208. doi: 10.1016/j.cej.2018.09.094
    [10]
    ZHOU J B, LIU W, CAI W Q. The synergistic effect of Ag/AgCl@ZIF-8 modified g-C3N4 composite and peroxymonosulfate for the enhanced visible-light photocatalytic degradation of levofloxacin[J]. Science of the Total Environment, 2019, 696: 133962/1-13. http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiA5NjlmNTEwYzk2NjRjNDU4YjM0MTYzMmY0Njc1NDdhYxoId3VtZHZ3OHI%3D
    [11]
    XIE Y B, LI X Z. Degradation of bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation[J]. Journal of Hazardous Materials, 2006, 138(3): 526-533. doi: 10.1016/j.jhazmat.2006.05.074
    [12]
    ZHOU Q X, XING A, LI J, et al. Synergistic enhancement in photoelectrocatalytic degradation of bisphenol A by CeO2 and reduced graphene oxide co-modified TiO2 nanotube arrays in combination with Fenton oxidation[J]. Electrochimica Acta, 2016, 209: 379-388. doi: 10.1016/j.electacta.2016.05.094
    [13]
    BESSEGATO G G, CARDOSO J C, SILVA B F D, et al. Combination of photoelectrocatalysis and ozonation: a novel and powerful approach applied in Acid Yellow 1 mineralization[J]. Applied Catalysis B: Environmental, 2016, 180: 161-168. doi: 10.1016/j.apcatb.2015.06.013
    [14]
    WANG K Y, LIANG G Z, WAQAS M, et al. Peroxymonosulfate enhanced photoelectrocatalytic degradation of ofloxacin using an easily coated cathode[J]. Separation and Purification Technology, 2019, 236: 116301/1-9. http://www.sciencedirect.com/science/article/pii/S1383586619337360
    [15]
    BACHA A U R, NABI L, CHENG H Y, et al. Photoelectrocatalytic degradation of endocrine-disruptor bisphenol A with significantly activated peroxymonosulfate by Co-BiVO4 photoanode[J]. Chemical Engineering Journal, 2020, 389: 124482/1-8.
    [16]
    ZHANG M M, GONG Y, MA N. Promoted Photoelectrocatalytic degradation of BPA with peroxymonosulfate on a MnFe2O4 modified carbon paper cathode[J]. Chemical Engineering Journal, 2020, 399: 125088/1-11. http://www.sciencedirect.com/science/article/pii/S1385894720310809
    [17]
    LIU S S, ZHAO X, WANG Y B, et al. Peroxymonosulfate enhanced photoelectrocatalytic degradation of phenol activated by Co3O4 loaded carbon fiber cathode[J]. Journal of Catalysis, 2017, 355: 167-175. doi: 10.1016/j.jcat.2017.09.016
    [18]
    TANG Y M, ZHENG Z X, SUN X L, et al. Ternary CdS-MoS2 coated ZnO nanobrush photoelectrode for one-dimensional acceleration of charge separation upon visible light illumination[J]. Chemical Engineering Journal, 2019, 368: 448-458. doi: 10.1016/j.cej.2019.02.166
    [19]
    SHARMA P K, SINGH V V, PANDEY L K, et al. Photoelectrocatalytic degradation of vesicant agent using Eu/ZnO/PPy nanocomposite[J]. Environmental Pollution, 2019, 246: 491-500. doi: 10.1016/j.envpol.2018.12.036
    [20]
    宋昆朋, 王银杰, 方祝青, 等. ZIF-67/聚磷腈复合微球的可控制备及表征[J]. 中国塑料, 2021, 35(1): 1-7.

    SONG K P, WANG Y J, FANG Z Q, et al. Controlled preparation and characterization of ZIF-67/polyphosphonitrile composite microspheres[J]. China Plastic, 2021, 35(1): 1-7.
    [21]
    程远, 李志达, 吴红军. 沸石咪唑酯类骨架材料及其衍生碳材料的制备及性能表征[J]. 化工新型材料, 2021, 49(1): 90-94;98.

    CHENG Y, LI Z D, WU H J. Preparation and characterization of zeolite imidazole-ester framework materials and their derived carbon materials[J]. New Chemical Materials, 201, 49(1): 90-94;98.
    [22]
    庄晓利, 韩超, 张晨, 等. 基于ZIF-67的Co3O4/C修饰电极制备及对多巴胺传感性能研究[J/OL]. 分析试验室, 2021, 40(3): 265-269.

    ZHUANG X L, HAN C, ZHANG C, et al. Preparation of Co3O4/C Modified Electrode Based on ZIF-67 and Its Sensing Performance for Dopamine[J/OL]. Analysis Laboratory, 2021, 40(3): 265-269.
    [23]
    CHEN Y, WANG L, GAO R J, et al. Polarization-Enhanced direct Z-scheme ZnO-WO3-x nanorod arrays for efficient piezoelectric-photoelectrochemical water Splitting[J]. Applied Catalysis B: Environmental, 2019, 259: 118079/1-9. http://www.sciencedirect.com/science/article/pii/S0926337319308264
    [24]
    LIU X J, PAN L K, ZHAO Q F, et al. UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(Ⅵ)[J]. Chemical Engineering Journal, 2012, 183: 238-243. doi: 10.1016/j.cej.2011.12.068
    [25]
    YAO M S, TANG W X, WANG G E, et al. MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance[J]. Advanced Materials, 2016, 28: 5229-5234. doi: 10.1002/adma.201506457
    [26]
    JIA G R, LIU L L, ZHANG L, et al. 1D alignment of ZnO@ZIF-8/67 nanorod arrays for visible-light-driven photoelectrochemical water splitting[J]. Applied Surface Science, 2018, 448: 254-260. doi: 10.1016/j.apsusc.2018.04.102
    [27]
    XIAO H, LIU S T, SHI L L, et al. ZIF-derived wrinkled Co3O4 polyhedra supported on 3D macroporous carbon sponge for supercapacitor electrode[J]. Ceramics International, 2019, 45: 14634-14641. doi: 10.1016/j.ceramint.2019.04.182
    [28]
    BAI Y R, DONG J P, HOU Y Q, et al. Co3O4@PC derived from ZIF-67 as an efficient catalyst for the selective catalytic reduction of NO with NH3 at low temperature[J]. Chemical Engineering Journal, 2018, 361: 703-712. http://www.sciencedirect.com/science/article/pii/S138589471832597X
    [29]
    LI Y Y, LI K, LUO Y Y, et al. Synthesis of Co3O4/ZnO nano-heterojunctions by one-off processing ZIF-8@ZIF-67 and their gas-sensing performances for trimethylamine[J]. Sensors and Actuators B: Chemical, 2020, 308: 127657/1-9.
    [30]
    HUANG S L, HE B, YAN X L, et al. Hierarchical ZnO/Si nanowire arrays as an effective substrate for surface-enhanced Raman scattering application[J]. Sensors and Actuators B: Chemical, 2018, 273: 48-55. doi: 10.1016/j.snb.2018.06.003
    [31]
    WANG C, LUO S Y, LIU C Y, et al. Photocatalytic Performance of single crystal ZnO nanorods and ZnO nanorods films under natural sunlight[J]. Inorganic Chemistry Communications, 2020, 114: 107842/1-7. http://www.sciencedirect.com/science/article/pii/S1387700320300769
    [32]
    LORITE I, ROMERO J J, FEMANDEZ J F. Effects of the agglomeration state on the Raman properties of Co3O4 nanoparticles[J]. Journal of Raman Spectroscopy, 2012, 43(10): 1443-1448. doi: 10.1002/jrs.4098
    [33]
    LIANG Y T, VIJAYAN B K, GRAY K A, et al. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production[J]. Nano Letters, 2011, 11(7): 2865-2870. doi: 10.1021/nl2012906
    [34]
    ZHOU J, ZHOU A W, SHU L, et al. Cellular heterojunctions fabricated through the sulfurization of MOFs onto ZnO for high-efficient photoelectrochemical water oxidation[J]. Applied Catalysis B: Environmental, 2018, 226: 421-428. doi: 10.1016/j.apcatb.2017.12.065
    [35]
    REDA G M, FAN H Q, TIAN H L. Room-temperature solid state synthesis of Co3O4/ZnO p-n heterostructure and its photocatalytic activity[J]. Advanced Powder Technology, 2017, 28: 953-963. doi: 10.1016/j.apt.2016.12.025
    [36]
    GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review[J]. Chemical Engineering Journal, 2016, 310: 307-315.

Catalog

    Article views (657) PDF downloads (59) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return