Citation: | LU Jinkai, ZHANG Meng, LI Bin, DONG Lihui, FAN Minguang. Chemical Fixation of CO2 Catalyzed by Functionalized Graphene Oxide[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 35-42. DOI: 10.6054/j.jscnun.2021041 |
[1] |
RASHIDI N A, YUSUP S. An overview of activated carbons utilization for the post-combustion carbon dioxide capture[J]. Journal of CO2 Utilization, 2016, 13: 1-16. doi: 10.1016/j.jcou.2015.11.002
|
[2] |
BHANIA P, MODAK A, BHAUMIK A. Porous organic polymers for CO2 storage and conversion reactions[J]. ChemCatChem, 2019, 11(1): 244-257. doi: 10.1002/cctc.201801046
|
[3] |
KAMPHUIS A J, PICCHIONI F, PESCARMONA P P. CO2-fixation into cyclic and polymeric carbonates: principles and applications[J]. Green Chemistry, 2019, 21: 406-448. doi: 10.1039/C8GC03086C
|
[4] |
LU X B, DARENSBOURG D J. Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates[J]. Chemical Society Reviews, 2012, 41: 1462-1484. doi: 10.1039/C1CS15142H
|
[5] |
SRIVASTAVA R, D SRINIVAS, RATNASAMY P. Sites for CO2 activation over amine-functionalized mesoporous Ti(Al)-SBA-15 catalysts[J]. Microporous & Mesoporous Materials, 2006, 90: 314-326. http://www.sciencedirect.com/science/article/pii/S1387181105005421
|
[6] |
ZHANG X, NING Z, WEI W, et al. Chemical fixation of carbon dioxide to propylene carbonate over amine-functionalized silica catalysts[J]. Catalysis Today, 2006, 115: 102-106. doi: 10.1016/j.cattod.2006.02.028
|
[7] |
JAGTAP S R, RAJE V P, SAMANT S D, et al. Silica supported polyvinyl pyridine as a highly active heterogeneous base catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides[J]. Journal of Molecular Catalysis A Chemical, 2007, 266: 69-74. doi: 10.1016/j.molcata.2006.10.033
|
[8] |
DAI W L, JIN B, LUO S L, et al. Novel functionalized guanidinium ionic liquids: efficient acid-base bifunctional catalysts for CO2 fixation with epoxides[J]. Journal of Molecular Catalysis A Chemical, 2013, 378: 326-332. doi: 10.1016/j.molcata.2013.06.024
|
[9] |
YU G R, ZHANG S J, ZHOU G H, et al. Structure, interaction and property of amino-functionalized imidazolium ILs by molecular dynamics simulation and ab initio calculation[J]. AICHE Journal, 2010, 53(12): 3210-3221. doi: 10.1002/aic.11339
|
[10] |
BATES E D, MAYTON R D, NTAI I, et al. CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society, 2002, 124(6): 926-927. doi: 10.1021/ja017593d
|
[11] |
CHEN J J, LI W W, LI X L, et al. Carbon dioxide capture by aminoalkyl imidazolium-based ionic liquid: a computational investigation[J]. Physical Chemistry Chemical Physics, 2012, 14(13): 4589-4596. doi: 10.1039/c2cp23642g
|
[12] |
GUTOWSKI K E, MAGINN E J. Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation[J]. Journal of the American Chemical Society, 2008, 130(44): 14690-14704. doi: 10.1021/ja804654b
|
[13] |
YU G R, ZHANG S J, YAO X Q, et al. Design of task-specific ionic liquids for capturing CO2: a molecular orbital study[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2875-2880. doi: 10.1021/ie050975y
|
[14] |
YUE C, SU D, ZHANG X, et al. Amino-functional imidazolium ionic liquids for CO2 activation and conversion to form cyclic carbonate[J]. Catalysis Letters, 2014, 144(7): 1313-1321. doi: 10.1007/s10562-014-1241-5
|
[15] |
YUE S, WANG P, HAO X, et al. Dual amino-functionalized ionic liquids as efficient catalysts for carbonate synthesis from carbon dioxide and epoxide under solvent and cocatalyst-free conditions[J]. Journal of CO2 Utilization, 2017, 21: 238-246. doi: 10.1016/j.jcou.2017.07.017
|
[16] |
张灿鹏, 邵志刚. CO2和CO分子在五边形石墨烯表面的吸附行为[J]. 华南师范大学学报(自然科学版), 2019, 51(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201901003.htm
ZHANG C P, SHAO Z G. The adsorption behavior of CO2 and coonpenta-Graphere[J]. Journl of South China Normal University (Natural Science Edition), 2019, 51(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201901003.htm
|
[17] |
ZHANG M, CHU B, LI G Y, et al. Triethanolamine-modified mesoporous SBA-15: facile one-pot synthesis and its catalytic application for cycloaddition of CO2 with epoxides under mild conditions[J]. Microporous & Mesoporous Materials, 2019, 274: 363-372. http://d.wanfangdata.com.cn/periodical/92a931c8b57c44e1e723a8274e823153
|
[18] |
APPATURI N J, JOHAN M F, RAMALINGAM R J, et al. Highly efficient green mesostructured urea functionalized on SBA-15 catalysts for selective synthesis of benzlidenemalononitrile[J]. Microporous and Mesoporous Materials, 2018, 256: 67-74. doi: 10.1016/j.micromeso.2017.07.055
|
[19] |
ZHANG S Q, LEE Y R, JEON H J, et al. Pd nanoparticles on a microporous covalent triazine polymer for H2 production via formic acid decomposition[J]. Materials Letters, 2018, 215: 211-213. doi: 10.1016/j.matlet.2017.12.106
|
[20] |
GUO L Y, DENG L L, JIN X C, et al. Composite ionic liquids immobilized on MCM-22 as efficient catalysts for the cycloaddition reaction with CO2 and propylene oxide[J]. Catalysis Letters, 2017, 147: 2290-2297. doi: 10.1007/s10562-017-2137-y
|
[21] |
LIU M, GAO K, LIANG L, et al. Insights into hydrogen bond donor promoted fixation of carbon dioxide with epoxides catalyzed by ionic liquids[J]. Physical Chemistry Chemical Physics, 2015, 17(8): 5959-5965. doi: 10.1039/C4CP05464D
|
[22] |
LUO R, ZHOU X, FANG Y, et al. Metal- and solvent-free synthesis of cyclic carbonates from epoxides and CO2 in the presence of graphite oxide and ionic liquid under mild conditions: a kinetic study[J]. Carbon, 2015, 82: 1-11. doi: 10.1016/j.carbon.2014.10.004
|
[23] |
JIAN S, CHENG W, WEI F, et al. Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2[J]. Catalysis Today, 2009, 148: 361-367. doi: 10.1016/j.cattod.2009.07.070
|
[24] |
ZHU J, GU Y K, WU J, et al. Aqueous grafting ionic liquid on graphene oxide for CO2 cycloaddition[J]. Catalysis Letters, 2017, 147: 335-344. doi: 10.1007/s10562-016-1941-0
|
[25] |
SUBHAN S, RAHMAN A U, YASEEN M, et al. Ultra-fast and highly efficient catalytic oxidative desulfurization of dibenzothiophene at ambient temperature over low Mn loaded Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts using NaClO as oxidant[J]. Fuel, 2019, 237: 793-805. doi: 10.1016/j.fuel.2018.10.067
|
[26] |
SUBHAN S, MUHAMMAD Y, SAHIBZADA M, et al. Studies on the selection of a catalyst oxidant system for the energy-efficient desulfurization and denitrogenation of fuel oil at mild operating conditions[J]. Energy and Fuels, 2019, 33(9): 8423-8439. doi: 10.1021/acs.energyfuels.9b01950
|
[27] |
DAI W, ZHANG Y, TAN Y, et al. Reusable and efficient polymer nanoparticles grafted with hydroxyl-functionalized phosphonium-based ionic liquid catalyst for cycloaddition of CO2 with epoxides[J]. Applied Catalysis A: General, 2016, 514: 43-50. doi: 10.1016/j.apcata.2016.01.004
|
[28] |
QI C, YE J, WEI Z, et al. Polystyrene-supported amino acids as efficient catalyst for chemical fixation of carbon dioxide[J]. ChemInform, 2010, 352: 1925-1933. doi: 10.1002/adsc.201000261
|
[29] |
XIAO L, DAN S, YUE C, et al. Protic ionic liquids: a highly efficient catalyst for synthesis of cyclic carbonate from carbon dioxide and epoxides[J]. Journal of CO2 Utilization, 2014, 6: 1-6. doi: 10.1016/j.jcou.2014.01.004
|
[30] |
KIM M I, KIM D K, BINEESH K V, et al. Catalytic performance of montmorillonite clay ion-exchanged with ionic liquids in the cycloaddition of carbon dioxide to allyl glycidyl ether[J]. Catalysis Today, 2013, 200: 24-29. doi: 10.1016/j.cattod.2012.04.049
|
[31] |
SHI T Y, WANG J Q, SUN J, et al. Efficient fixation of CO2 into cyclic carbonates catalyzed by hydroxyl-functionalized poly(ionic liquids)[J]. RSC Advances, 2013, 3(11): 3726-3732. doi: 10.1039/c3ra21872d
|
[32] |
YU Y I, CHOI H J, SELVARAJ M, et al. Catalytic performance of polymer-supported ionic liquids in the cycloaddition of carbon dioxide to allyl glycidyl ether[J]. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102(2): 353-365. doi: 10.1007/s11144-010-0280-1
|
[33] |
MUHAMMAD Y, Ur RAHMAN A, Ur RASHID H, et al. Hydrodesulfurization of dibenzothiophene using Pd-promoted Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts coupled with ionic liquids at ambient operating conditions[J]. RSC Advances, 2019, 9: 10371-10385. doi: 10.1039/C9RA00095J
|
1. |
聂萌瑶,刘鑫. 考虑最大通信量的物联网群体访问路由算法. 计算机仿真. 2024(02): 415-419 .
![]() |