• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHEN Meiqiong, GUO Wenxian, XIAO Hongfei, CAI Zhiquan, ZHANG Min, CHENG Faliang. Co/β-Mo2C-decorated Carbon Paper Anode for High-performance Microbial Fuel Cells[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 15-21. DOI: 10.6054/j.jscnun.2021038
Citation: CHEN Meiqiong, GUO Wenxian, XIAO Hongfei, CAI Zhiquan, ZHANG Min, CHENG Faliang. Co/β-Mo2C-decorated Carbon Paper Anode for High-performance Microbial Fuel Cells[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 15-21. DOI: 10.6054/j.jscnun.2021038

Co/β-Mo2C-decorated Carbon Paper Anode for High-performance Microbial Fuel Cells

More Information
  • Received Date: March 08, 2021
  • Available Online: July 05, 2021
  • Bimetallic carbide Co/β-Mo2C was prepared with the thermal treatment-assisted chemical method and used as an anode catalyst for Microbial Fuel Cells (MFCs). The morphology and content of Co/β-Mo2C was studied with the scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Furthermore, the cyclic voltammetry (CV), the electrochemical impedance spectroscopy (EIS) and a single-chamber air-cathode Microbial Fuel Cell(MFC) were used to study the electrochemical performance of Co/β-Mo2C. The results showed that due to the prominent electrochemical activity and excellent biocompatibility, the MFC device equipped with 3 mg/cm2 Co/β-Mo2C-decorated carbon paper anode delivered a power density of 483.3 mW/cm2, and a coulomb efficiency of 3.7%, which are 1.30 and 1.68 times those of the pristine carbon paper anode MFCs respectively. This work provides a new path for the explorer of high-performance anodic catalysts for MFCs application.
  • [1]
    SUN M, ZHAI L F, LI W W, et al. Harvest and utilization of chemical energy in wastes by microbial fuel cells[J]. Chemical Society Reviews, 2016, 45(10): 2847-2870. doi: 10.1039/C5CS00903K
    [2]
    YUAN H, HE Z. Graphene-modified electrodes for enhancing the performance of microbial fuel cells[J]. Nanoscale, 2015, 7(16): 7022-7029. doi: 10.1039/C4NR05637J
    [3]
    杨佘维, 黄志华, 孙健. 石墨烯-钴-聚吡咯复合电极改善藻菌微生物燃料电池性能的研究[J]. 华南师范大学学报(自然科学版), 2018, 50(3): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201803004.htm

    YANG S W, HUANG Z H, SUN J. Increased electricity generation performance of photo microbial fuel cell with grapheme-polypyrrole-cobalt composite electrode[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(3): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201803004.htm
    [4]
    LI S, CHENG C, THOMAS A. Carbon-based microbial-fuel-cell electrodes: from conductive supports to active catalysts[J]. Advanced Materials, 2017, 29(8): 1602547/1-30. doi: 10.1002/adma.201602547
    [5]
    李海杰. 复合碳纳米阳极强化微生物燃料电池产电研究[J]. 华南师范大学学报(自然科学版), 2016, 48(4): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201604010.htm

    LI H J. Performance improvement of microbial fuel cell for electricity generation by composite graphene-carbon nano-tube modified anode[J]. Journal of South China Normal University(Natural Science Edition), 2016, 48(4): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201604010.htm
    [6]
    CHENG C, LI S, THOMAS A, et al. Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications[J]. Chemical Reviews, 2017, 117(3): 1826-1914. doi: 10.1021/acs.chemrev.6b00520
    [7]
    YANG Y, LIU T, LIAO Q, et al. A three-dimensional nitrogen-doped graphene aerogel-activated carbon composite catalyst that enables low-cost microfluidic microbial fuel cells with superior performance[J]. Journal of Materials Chemistry A, 2016, 4(41): 15913-15919. doi: 10.1039/C6TA05002F
    [8]
    WANG H, WANG G, LING Y, et al. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode[J]. Nanoscale, 2013, 5(21): 10283-10290. doi: 10.1039/c3nr03487a
    [9]
    CHEN M, ZENG Y, ZHAO Y, et al. Monolithic three-dimensional graphene frameworks derived from inexpensive graphite paper as advanced anodes for microbial fuel cells[J]. Journal of Materials Chemistry A, 2016, 4(17): 6342-6349. doi: 10.1039/C6TA00992A
    [10]
    SCHRDER U, NIESSEN J, SCHOLZ F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude[J]. Angewandte Chemie International Edition, 2003, 42(25): 2880-2883. doi: 10.1002/anie.200350918
    [11]
    ZHAO F, RAHUNEN N, VARCOE J R, et al. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell[J]. Environmental Science & Technology, 2008, 42(13): 4971-4976. http://www.sciencedirect.com/science/article/pii/S0378775308008331
    [12]
    QIAN F, HE Z, THELEN M P, et al. A microfluidic microbial fuel cell fabricated by soft lithography[J]. Bioresource Technology, 2011, 102(10): 5836-5840. doi: 10.1016/j.biortech.2011.02.095
    [13]
    ZHAO C, GAI P, LIU C, et al. Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells[J]. Journal of Materials Chemistry A, 2013, 1(40): 12587-12594. doi: 10.1039/c3ta12947k
    [14]
    HE Y, XIAO X, LI W, et al. Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode[J]. Physical Chemistry Chemical Physics, 2012, 14(28): 9966-9971. doi: 10.1039/c2cp40873b
    [15]
    SUN M, ZHANG F, TONG Z H, et al. A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1[J]. Biosensors and Bioelectronics, 2010, 26: 338-343. doi: 10.1016/j.bios.2010.08.010
    [16]
    ZHAO C E, WANG W J, SUN D, et al. Nanostructured graphene/TiO2 hybrids as high-performance anodes for microbial fuel cells[J]. Chemistry-A European Journal, 2014, 20(23): 7091-7097. doi: 10.1002/chem.201400272
    [17]
    ZHANG C, LIANG P, YANG X, et al. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell[J]. Biosensors & Bioelectronics, 2016, 81: 32-38. http://europepmc.org/abstract/MED/26918615
    [18]
    LIU D, CHANG Q, GAO Y, et al. High performance of microbial fuel cell afforded by metallic tungsten carbide decorated carbon cloth anode[J]. Electrochimica Acta, 2020, 330: 135243/1-8. http://www.sciencedirect.com/science/article/pii/S0013468619321140
    [19]
    ZHENG W, COTTER T P, KAGHAZCHI P, et al. Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition[J]. Journal of the American Chemical Society, 2013, 135(9): 3458-3464. doi: 10.1021/ja309734u
    [20]
    ZOU L, HUANG Y, WU X, et al. Synergistically promoting microbial biofilm growth and interfacial bioelectrocatalysis by molybdenum carbide nanoparticles functionalized graphene anode for bioelectricity production[J]. Journal of Power Sources, 2019, 413: 174-181. doi: 10.1016/j.jpowsour.2018.12.041
    [21]
    ROSENBAUM M, ZHAO F, SCHRÖDER U, et al. Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high-performance, noble-metal-free microbial fuel cell[J]. Angewandte Chemie International Edition, 2006, 118(40): 6810-6813. http://europepmc.org/abstract/med/16969884
    [22]
    ZOU L, LU Z S, HUANG Y H, et al. Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells[J]. Journal of Power Sources, 2017, 359: 549-555. doi: 10.1016/j.jpowsour.2017.05.101
    [23]
    WANG Y, LI B, CUI D, et al. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell[J]. Biosensors & Bioelectronics, 2014, 51: 349-355. http://www.ncbi.nlm.nih.gov/pubmed/23994845
    [24]
    ZENG L, ZHANG L, LI W, et al. Molybdenum carbide as anodic catalyst for microbial fuel cell based on Klebsiella pneumoniae[J]. Biosensors & Bioelectronics, 2010, 25: 2696-2700. http://www.cabdirect.org/abstracts/20103209103.html;jsessionid=4AB5838C79A6F59CE4350B353B89E64C
    [25]
    ZENG L Z, ZHAO S F, WANG Y Q, et al. Ni/β-Mo2C as noble-metal-free anodic electrocatalyst of microbial fuel cell based on Klebsiella pneumoniae[J]. International Journal of Hydrogen Energy, 2012, 37(5): 4590-4596. doi: 10.1016/j.ijhydene.2011.05.174
    [26]
    靳广洲, 樊秀菊, 孙桂大, 等. 钴掺杂对碳化钼催化噻吩加氢脱硫性能的影响[J]. 高等学校化学学报, 2007(6): 1169-1174. doi: 10.3321/j.issn:0251-0790.2007.06.034

    JIN G Z, FAN X J, SUN G D, et al. Effect of Co doping on the cartalytic performace of molybdenum carbide for thiophene hydrodesulfurization[J]. Chemical Research in Chinese Universities, 2007(6): 1169-1174. doi: 10.3321/j.issn:0251-0790.2007.06.034
    [27]
    ZENG L Z, ZHAO S F, ZHANG L X, et al. A facile synthesis of molybdenum carbide nanoparticles-modified carbonized cotton textile as an anode material for high-performance microbial fuel cells[J]. RSC Advances, 2018, 8(70): 40490-40497. doi: 10.1039/C8RA07502F
    [28]
    VRUBEL H, HU X, Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions[J]. Angewandte Chemie International Edition, 2012, 124(51): 12875-12878. doi: 10.1002/anie.201207111
    [29]
    XIANG M, LI D, LI W, et al. Potassium and nickel doped β-Mo2C catalysts for mixed alcohols synthesis via syngas[J]. Catalysis Communications, 2007, 8(3): 513-518. doi: 10.1016/j.catcom.2006.07.028
    [30]
    LIANG Q, JIN H, WANG Z, et al. Metal-organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting[J]. Nano Energy, 2019, 57: 746-752. doi: 10.1016/j.nanoen.2018.12.060
    [31]
    WANG H W, SKELDON P, THOMPSON G E. XPS studies of MoS2 formation from ammonium tetrathiomolybdate solutions[J]. Surface & Coatings Technology, 1997, 91(3): 200-207. http://www.sciencedirect.com/science/article/pii/S0257897296031866
    [32]
    BACKES C, BERNER N C, CHEN X, et al. Functionalization of liquid-exfoliated two-dimensional 2H-MoS2[J]. Angewandte Chemie International Edition, 2015, 54(9): 2638-2642. doi: 10.1002/anie.201409412
    [33]
    GUO W, CHEN M, LIU X, et al. Mo2C/reduced graphene oxide composites with enhanced electrocatalytic activity and biocompatibility for microbial fuel cells[J]. Chemistry-A European Journal, 2021, 27(13): 4291-4296. doi: 10.1002/chem.202005020
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (467) PDF downloads (94) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return