• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
GUO Xinpeng, GUO Yongquan, WANG Jingnan, YIN Linhan. The Structure and Magnetic Properties of SmCo5-type Medium- and High-entropy Intermetallic Compounds[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 1-9. DOI: 10.6054/j.jscnun.2021036
Citation: GUO Xinpeng, GUO Yongquan, WANG Jingnan, YIN Linhan. The Structure and Magnetic Properties of SmCo5-type Medium- and High-entropy Intermetallic Compounds[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 1-9. DOI: 10.6054/j.jscnun.2021036

The Structure and Magnetic Properties of SmCo5-type Medium- and High-entropy Intermetallic Compounds

More Information
  • Received Date: February 17, 2020
  • Available Online: July 05, 2021
  • Three medium-entropy intermetallic compounds (Sm1/3Ce1/3Pr1/3)Co5, (Sm1/3Ce1/3Nd1/3)Co5 and (Sm1/3Pr1/3Nd1/3)Co5 and a high-entropy intermetallic compound (Sm1/4Ce1/4Pr1/4Nd1/4)Co5 were designed on the basis of SmCo5. The possibility of forming single-phase structure was predicted using atomic size difference and mixing enthalpy. Four intermetallics were synthesized via the vacuum arc-melting technology. The X-ray diffractometer (XRD), the energy dispersive X-ray spectrometer (EDS) and the vibration sample magnetometer (VSM) were used to study the phase, chemical compositions and magnetic properties. The results show that four intermetallics are single-phase structures and crystalline in a hexagonal CaCu5 structure with a space group of P6/mmm. The rare earth atoms occupy 1a site. The atomic concentration at the rare earth site is equiatomic ratio. The room temperature magnetizations follow the Langevin model. Magnetization depends on the composition of the compound. The magnetic valence model was employed to check the valence of Ce. The calculated results show that Ce is tetravalent in (Sm1/3Ce1/3Pr1/3)Co5, (Sm1/3Ce1/3Nd1/3)Co5 and (Sm1/4Ce1/4Pr1/4Nd1/4)Co5 and makes no contribution to the magnetic moment.
  • [1]
    YEH J W, LIN S J, CHIN T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J]. Metallurgical & Materials Transactions A, 2004, 35(8): 2533-2536. doi: 10.1007/s11661-006-0234-4
    [2]
    JUAN C C, TSAI M H, TSAI C W, et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys[J]. Intermetallics, 2015, 62: 76-83. doi: 10.1016/j.intermet.2015.03.013
    [3]
    NENE S S, FRANK M, LIU K, et al. Corrosion-resistant high entropy alloy with high strength and ductility[J]. Scripta Materialia, 2019, 166: 168-172. doi: 10.1016/j.scriptamat.2019.03.028
    [4]
    LI J, GAO B, TANG S, et al. High temperature deformation behavior of carbon-containing FeCoCrNiMn high entropy alloy[J]. Journal of Alloys and Compounds, 2018, 747: 571-579. doi: 10.1016/j.jallcom.2018.02.332
    [5]
    LI P, WANG A, LIU C T. A ductile high entropy alloy with attractive magnetic properties[J]. Journal of Alloys and Compounds, 2017, 694: 55-60. doi: 10.1016/j.jallcom.2016.09.186
    [6]
    MISHRA R K, SHAHI R R. Effect of annealing conditions and temperatures on phase formation and magnetic beha-viour of CrFeMnNiTi high entropy alloy[J]. Journal of Magnetism and Magnetic Materials, 2018, 465: 169-175. doi: 10.1016/j.jmmm.2018.04.056
    [7]
    YANG T, ZHAO Y L, TONG Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science, 2018, 362: 933-937. doi: 10.1126/science.aas8815
    [8]
    YADAV T P, MUKHOPADHYAY S, MISHRA S S, et al. Synthesis of a single phase of high-entropy Laves intermetallics in the Ti-Zr-V-Cr-Ni equiatomic alloy[J]. Philosophical Magazine Letters, 2017, 97(12): 494-503. doi: 10.1080/09500839.2017.1418539
    [9]
    ZHOU N, JIANG S, HUANG T, et al. Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics[J]. Science Bulletin, 2019, 64(12): 856-864. doi: 10.1016/j.scib.2019.05.007
    [10]
    STRNAT K J, STRNAT R M W. Rare earth-cobalt permanent magnets[J]. Journal of Magnetism and Magnetic Materials, 1991, 100(1): 38-56.
    [11]
    NORDSTR M L, ERIKSSON O, BROOKS M S S, et al. Theory of ferromagnetism in CeCo5[J]. Physical Review B, 1990, 41(13): 9111-9120. doi: 10.1103/PhysRevB.41.9111
    [12]
    FRANSE J J M, RADWAŃSKI R J. Handbook of magne-tic materials[M]. Amsterdam: Elsevier, 1993: 307-501.
    [13]
    PARETI L, MOZE O, SOLZI M, et al. Magnetocrystalline anisotropy in Y1-xPrxCo5[J]. Journal of Applied Phy-sics, 1988, 63(1): 172-175. doi: 10.1063/1.340485
    [14]
    RAO J E G U S. An analysis of the rare earth contribution to the magnetic anisotropy in RCo5 and R2Co17 compounds[J]. Journal of Solid State Chemistry, 1973, 6: 387-395. doi: 10.1016/0022-4596(73)90228-4
    [15]
    ALAMEDA J M, GIVORD D, LEMAIRE R Q, et al. Co energy and magnetization anisotropies in RCo5 intermetallics between 4.2 K and 300 K[J]. Journal of Applied Physics, 1981, 52(3): 2079-2081. doi: 10.1063/1.329622
    [16]
    WANG K, ZHANG M, OUYANG Y, et al. Enhancement of rotating magnetocaloric effect by Fe substitution in NdCo5-xFex alloys[J]. Intermetallics, 2020, 118: 106676/1-7. http://www.sciencedirect.com/science/article/pii/S0966979519309458
    [17]
    梁翠芬, 熊予莹, 初本莉, 等. 磁性纳米Fe3O4/TiO2复合材料的制备[J]. 华南师范大学学报(自然科学版), 2010(2): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201002014.htm

    LIANG C F, XIONG Y Y, CHU B L, et al. Sythesis of magnetie nanometer Fe3O4 powder and Fe3O4/TiO2 composite material[J]. Journal of South China Normal University(Natural Science Edition), 2010(2): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201002014.htm
    [18]
    戚平, 周庆琼, 林子豪, 等. 磁性固相萃取-液相色谱法测定环境水样中多种碱性染料[J]. 华南师范大学学报(自然科学版), 2015, 47(2): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201502011.htm

    QI P, ZHOU Q Q, LIN Z H, et al. Determination of basic dyes in environmental water by magnetic solid phase extraction high performance liquid chromatography[J]. Journal of South China Normal University(Natural Science Edition), 2015, 47(2): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201502011.htm
    [19]
    FANG L, ZHANG T, WANG H, et al. Effect of ball milling process on coercivity of nanocrystalline SmCo5 magnets[J]. Journal of Magnetism and Magnetic Materials, 2018, 446: 200-205. doi: 10.1016/j.jmmm.2017.09.012
    [20]
    CUI B Z, LI W F, HADJIPANAYIS G C. Formation of SmCo5 single-crystal submicron flakes and textured polycrystalline nanoflakes[J]. Acta Materialia, 2011, 59(2): 563-571. doi: 10.1016/j.actamat.2010.09.060
    [21]
    TAKEUCHI A, AKIHISA I. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817-2829. doi: 10.2320/matertrans.46.2817
    [22]
    YANG X, ZHANG Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry and Physics, 2012, 132(2/3): 233-238. http://www.sciencedirect.com/science/article/pii/S0254058411009357
    [23]
    GUO X P, GUO Y Q. Effects on structure and magnetic properties of SmCo5 based intermetallic compounds by increasing configuration entropy from binary to quaternary equiatomic rare earths at Sm site[J]. Journal of Alloys and Compounds, 2020, 813: 152230/1-8.
  • Cited by

    Periodical cited type(3)

    1. 董霄鹏,赵兴,殷林瀚,彭思琦,王京南,郭永权. 熵调控的Gd_2Co_(17)金属间化合物的结构与室温磁性能. 物理学报. 2023(10): 296-307 .
    2. 孔钦可,詹花茂,程养春,王磊,宋文乐,李雪松,薛志勇. 一种高性能铁基纳米晶合金的软磁性能研究. 华南师范大学学报(自然科学版). 2022(01): 1-6 .
    3. 王京南,郭永权,殷林瀚,赵兴,郭新鹏,解娜娜. Cu_(1-x)Co_xInTe_2稀磁半导体的制备及磁学、光学性质. 华南师范大学学报(自然科学版). 2022(02): 1-6 .

    Other cited types(2)

Catalog

    Article views (1144) PDF downloads (108) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return