• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHANG Linping, LI Fengjun. A Study of Driving Conditions Based on Principal Component Analysis and Optimization Clustering Algorithm[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 121-128. DOI: 10.6054/j.jscnun.2021035
Citation: ZHANG Linping, LI Fengjun. A Study of Driving Conditions Based on Principal Component Analysis and Optimization Clustering Algorithm[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 121-128. DOI: 10.6054/j.jscnun.2021035

A Study of Driving Conditions Based on Principal Component Analysis and Optimization Clustering Algorithm

More Information
  • Received Date: September 21, 2020
  • Available Online: April 28, 2021
  • As the fuzzy C-means clustering algorithm is easy to fall into local optimum and the traditional principal component analysis (PCA) does not fully reflect replacement of multiple indexes with a small number of composite indicators, an improved principal component analysis and a genetic simulated annealing algorithm are proposed to optimize the fuzzy C-means clustering algorithm (GSA-FCM), so as to build the driving condition. First of all, the improved PCA is used to deal with the characteristic parameter matrix. Then, GSA-FCM clustering algorithm is used to cluster the kinematics fragments. Finally, the appropriate fragments are selected to synthesize the final working pattern. Moreover, the effectiveness of the characteristic parameters in the synthesis conditions of GSA-FCM clustering and traditional K-means clustering algorithm and the actual conditions were verified and compared with that of the standard test conditions of NEDC. The experimental results show that the average relative error of characteristic parameters between the condition synthesized with GSA-FCM clustering algorithm and the actual condition is 6.46%, which indicates that the clustering effect of GSA-FCM clustering algorithm is obvious and the error is small, and the synthesized driving condition can represent the actual driving condition of the city.
  • [1]
    胡鸿飞. 南京市轻型车实际行驶工况与检测标准工况比较研究[D]. 南京: 东南大学, 2017.

    HU H F. Comparative study on the actual driving cycl of light vehicle in Nanjing and testing standard cycls[D]. Nanjing: Southeast University, 2017.
    [2]
    SHI Q, ZHENG Y B, WANG R S, et al. The study of a new method of driving cycles construction[J]. Procedia Engineering, 2011, 16: 79-87. doi: 10.1016/j.proeng.2011.08.1055
    [3]
    李友文, 石琴, 姜平. 基于马尔科夫过程的行驶工况构建中数据处理与分析[J]. 合肥工业大学学报(自然科学版), 2010(4): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201004004.htm

    LI Y W, SHI Q, JIANG P. Data processing and analysis in driving cycle construction based on Markov process[J]. Journal of Hefei University of Technology(Natural Science), 2010(4): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201004004.htm
    [4]
    曹骞, 李君, 刘宇, 等. 基于马尔科夫链的长春市乘用车行驶工况构建[J]. 吉林大学学报(工学版), 2018, 48(5): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201805008.htm

    CAO Q, LI J, LIU Y, et al. Construction of passenger vehicle driving cycle based on Markov chain in Changchun[J]. Journal of Jilin University(Engineering and Techno-logy Edition), 2018, 48(5): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201805008.htm
    [5]
    ZHANG J, WANG Z P, LIU P, et al. Driving cycles construction for electric vehicles considering road environment: a case study in Beijing[J]. Applied Energy, 2019, 253: 113514/1-14.
    [6]
    YANG Y, LI T Z, HU H F, et al. Development and emissions performance analysis of local driving cycle for small-sized passenger cars in Nanjing, China[J]. Atmospheric Pollution Research, 2019, 10(5): 1514-1523. doi: 10.1016/j.apr.2019.04.009
    [7]
    胡志远, 秦艳, 谭丕强, 等. 基于大样本的上海市乘用车行驶工况构建[J]. 同济大学学报(自然科学版), 2015, 43(10): 1523-1527. doi: 10.11908/j.issn.0253-374x.2015.10.011

    HU Z Y, QIN Y, TAN P Q, et al. Construction of driving cycle of passenger vehicles in Shanghai based on large sample[J]. Journal of Tongji University(Natural Science), 2015, 43(10): 1523-1527. doi: 10.11908/j.issn.0253-374x.2015.10.011
    [8]
    王昊, 章桐, 宋珂. 上海市行驶工况构建与研究[J]. 内燃机与配件, 2018(13): 35-38. doi: 10.3969/j.issn.1674-957X.2018.13.015

    WANG H, ZHANG T, SONG K. Construction and research of driving cycle in Shanghai[J]. Internal Combustion Engine & Accessories, 2018(13): 35-38. doi: 10.3969/j.issn.1674-957X.2018.13.015
    [9]
    高建平, 任德轩, 郗建国. 基于全局K-means聚类算法的汽车行驶工况构建[J]. 河南理工大学学报(自然科学版), 2019, 38(1): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201901017.htm

    GAO J P, REN D X, XI J G. Vehicle driving cycle construction based on global K-means clustering algorithm[J]. Journal of Henan Polytechnic University(Natural Science Edition), 2019, 38(1): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201901017.htm
    [10]
    MAYAKUNTLA S K, VERMA A. A novel methodology for construction of driving cycles for Indian cities[J]. Transportation Research Part D: Tronsport and Environment, 2018, 65: 725-735. doi: 10.1016/j.trd.2018.10.013
    [11]
    高建平, 高小杰. 改进模糊C均值聚类法的车辆实际行驶工况构建[J]. 河南科技大学学报(自然科学版), 2017, 38(6): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201706005.htm

    GAO J P, GAO X J. Construction of vehicle driving cycle based on improved fuzzy C-means clustering method[J]. Journal of Henan University of Science and Technology(Natural Science Edition), 2017, 38(6): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201706005.htm
    [12]
    石琴, 王楠楠, 仇多洋. 粒子群优化的模糊聚类方法在车辆行驶工况中的应用[J]. 中国管理科学, 2011, 19(2): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK201102015.htm

    SHI Q, WANG N N, QIU D Y. Application of fuzzy clustering method based on particle swarm optimization in vehicle driving condition[J]. Chinese Journal of Management Science, 2011, 19(2): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK201102015.htm
    [13]
    刘应吉, 夏鸿文, 姚羽, 等. 组合主成分分析和模糊C均值聚类的车辆行驶工况制定方法[J]. 公路交通科技, 2018, 35(3): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201803011.htm

    LIU Y J, XIA H W, YAO Y, et al. Vehicle driving cycle determination method combined principal component analy-sis and fuzzy C-means clustering[J]. Journal of Highway and Transportation Science and Technology, 2018, 35(3): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201803011.htm
    [14]
    张林平, 李风军. 基于运行大数据的汽车行驶工况构建与分析[J]. 宁夏师范学院学报, 2020, 41(10): 76-89. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSB202010012.htm

    ZHANG L P, LI F J. Construction and analysis of vehicle driving cycle based on operation big data[J]. Journal of Ningxia Normal University, 2020, 41(10): 76-89. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSB202010012.htm
    [15]
    邬友, 夏玫. 样本处理方法对BP网络泛化能力影响的比较研究[J]. 内蒙古师范大学学报(自然科学汉文版), 2015(4): 520-522. doi: 10.3969/j.issn.1001-8735.2015.04.022

    WU Y, XIA M. Comparative study on the influence of sample processing methods on BP network generalization ability[J]. Journal of Inner Mongolia Normal University(Natural Science Edition), 2015(4): 520-522. doi: 10.3969/j.issn.1001-8735.2015.04.022
    [16]
    陈佳妮, 段文英, 丁徽. 模糊C-均值聚类分析在基因表达数据分析中的应用[J]. 森林工程, 2010, 26(2): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-SSGC201002014.htm

    CHEN J N, DUAN W Y, DING H. Application of fuzzy C-means clustering analysis in gene expression data analy-sis[J]. Forest Engineering, 2010, 26(2): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-SSGC201002014.htm
    [17]
    刘小芳. 点密度加权FCM算法的聚类有效性研究[J]. 计算机工程与应用, 2006, 42(15): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG200615005.htm

    LIU X F. Clustering effectiveness of point density weighted FCM algorithm[J]. Computer Engineering and Applications, 2006, 42(15): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG200615005.htm
    [18]
    刘秋菊, 王仲英, 刘素华. 基于遗传模拟退火算法的模糊聚类方法[J]. 微计算机信息, 2006, 22(5): 270-272. doi: 10.3969/j.issn.1008-0570.2006.05.099

    LIU Q J, WANG Z Y, LIU S H. Fuzzy clustering method based on genetic simulated annealing algorithm[J]. Microcomputer Information, 2006, 22(5): 270-272. doi: 10.3969/j.issn.1008-0570.2006.05.099
    [19]
    阿瑟. 2019华为杯研究生数学建模竞赛D题[EB/OL]. (2019-09-30)[2020-08-20]. https://www.jianshu.com/p/71681684666b.
    [20]
    鲁晨. 主元分析(PCA)理论分析及应用[J]. 图像处理学报, 2007(8): 38-41.

    LU C. Theory analysis and application of principal component analysis (PCA)[J]. Journal of Image Processing, 2007(8): 38-41.
    [21]
    MACQUEEN J. Some methods for classification and analy-sis of multivariate observations[C]//Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, California: University of California Press, 1967: 281-297.
  • Cited by

    Periodical cited type(9)

    1. 周英超,王保林,李连强,田瑛,蒙心蕊. 基于聚类和马尔可夫链的货车实际工况构建方法研究. 重庆交通大学学报(自然科学版). 2024(01): 116-124 .
    2. 刘泽奇,朱雄,王庆华,彭良峰,黄刚. 基于用户公共道路大数据的工况分类方法研究. 汽车科技. 2024(06): 53-58 .
    3. 刘继隆,李乐,俞俊. 基于改进K-means聚类的汽车行驶工况构建方法研究. 农业装备与车辆工程. 2023(05): 105-109 .
    4. 崔海龙,车兆伟. 基于应用场景的冷藏车工程工况分析. 农业装备与车辆工程. 2023(07): 139-143 .
    5. 周达左,陶洪峰. 基于改进FCM聚类算法的混合建模方法在苯酚浓度预测中的应用. 化工自动化及仪表. 2023(06): 889-892+899 .
    6. 姜俊昭,杨文豪,彭彬,郭婷,徐业凯,王国卓. 基于能耗加权策略的燃料电池汽车续驶里程预测. 汽车工程. 2023(12): 2357-2365+2329 .
    7. 奇格奇,李丹,段梦媛,关伟,马继辉. 考虑电动公交在途特性的电池状态梯次划分. 中国公路学报. 2022(08): 44-54 .
    8. 陈琳. 面向语音特征提取的英语机器人识别方法构建. 自动化与仪器仪表. 2022(08): 234-239 .
    9. 林小霞,黄顺红,张晓菲,洪瑞安. 基于Zigbee的门禁管理与网络请销假系统研究. 自动化与仪器仪表. 2021(12): 155-159 .

    Other cited types(3)

Catalog

    Article views (535) PDF downloads (92) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return