Citation: | HE Dan, LIN Laipeng, LI Xiaoyong, NIU Guoqiang, YI Xiaohui, HUANG Mingzhi. A Soft Measurement Model of Wastewater Treatment Process Based on BP Neural Network with Improved Particle Swarm Optimization Algorithms[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 114-120. DOI: 10.6054/j.jscnun.2021034 |
[1] |
蒙西, 乔俊飞, 韩红桂. 基于类脑模块化神经网络的污水处理过程关键出水参数软测量[J]. 自动化学报, 2019, 45(5): 906-919. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201905008.htm
MENG X, QIAO J F, HAN H G. Soft measurement of key effluent parameters in wastewater treatment process using brain-like modular neural networks[J]. ACTA Automatica Sinica, 2019, 45(5): 906-919. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201905008.htm
|
[2] |
HUANG M Z, MA Y W, WAN J Q, et al. A sensor-software based on a genetic algorithm-based neural fuzzy system for modeling and simulating a wastewater treatment process[J]. Applied Soft Computing, 2015, 27: 1-10. doi: 10.1016/j.asoc.2014.10.034
|
[3] |
严玉洁. AMBR工艺畜禽养殖污水处理及BP神经网络水质预测研究[D]. 银川: 宁夏大学, 2017.
YAN Y J. Study on dairy wastewater treatment by AMBR and effluent quality forecast by BP neural network[D]. Yinchuan: Ningxia University, 2017.
|
[4] |
CANETE J F D, SAZ-OROZCO P D, BARATTI R, et al. Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network[J]. Expert Systems with Applications, 2016, 63: 8-19. doi: 10.1016/j.eswa.2016.06.028
|
[5] |
韩广, 乔俊飞, 韩红桂, 等. 基于Hopfield神经网络的污水处理过程优化控制[J]. 控制与决策, 2014, 29(11): 2085-2088. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201411029.htm
HAN G, QIAO J F, HAN H G, et al. Optimal control for wastewater treatment process based on Hopfied neural network[J]. Control and Decision, 2014, 29(11): 2085-2088. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201411029.htm
|
[6] |
WANG J, WEN Y, YE Z, et al. Convergence analysis of BP neural networks via sparse response regularization[J]. Applied Soft Computing, 2017, 61: 354-363. doi: 10.1016/j.asoc.2017.07.059
|
[7] |
SRIDEVI K, SIVARAMAN E, MULLAI P. Back propagation neural network modelling of biodegradation and fermentative biohydrogen production using distillery waste-water in a hybrid upflow anaerobic sludge blanket reactor[J]. Bioresource Technology, 2014, 165: 233-240. doi: 10.1016/j.biortech.2014.03.074
|
[8] |
ZAGHLOUL M S, HAMZA R A, IORHEMEN O T, et al. Performance prediction of an aerobic granular SBR using modular multilayer artificial neural networks[J]. Science of the Total Environment, 2018, 645: 449-459. doi: 10.1016/j.scitotenv.2018.07.140
|
[9] |
刘亚丽, 李英娜, 李川. 基于遗传算法优化BP神经网络的线损计算研究[J]. 计算机应用与软件, 2019, 36(3): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201903015.htm
LIU Y L, LI Y N, LI C. Line loss calculation of optimized BP neural network based on genetic algorithm[J]. Computer Applications and Software, 2019, 36(3): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201903015.htm
|
[10] |
谢武明, 李俊, 周峰平, 等. 基于BP神经网络和遗传算法的污水处理厂电耗预测[J]. 水电能源科学, 2018, 36(8): 202-204. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201808050.htm
XIE W M, LI J, ZHOU F P, et al. Prediction of power consumption of wastewater treatment plant using BP neural network and genetic algorithm[J]. Water Resources and Power, 2018, 36(8): 202-204. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201808050.htm
|
[11] |
ABUALIGAH L M, KHADER A T, HANANDEH E S. A new feature selection method to improve the document clustering using particle swarm optimization algorithm[J]. Journal of Computational Science, 2017, 25: 456-466. http://www.sciencedirect.com/science/article/pii/S1877750316305002
|
[12] |
叶永伟, 葛沈浩, 任设东, 等. 基于PSO-DE算法的污水处理优化控制研究[J]. 计算机测量与控制, 2016, 24(2): 68-70;76. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201602020.htm
YE Y W, GE S H, REN S D, et al. Optimal control for wastewater treatment process based on mixed POS-DE algorithm[J]. Computer Measurement and Control, 2016, 24(2): 68-70;76. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201602020.htm
|
[13] |
乔俊飞, 逄泽芳, 韩红桂. 基于改进粒子群算法的污水处理过程神经网络优化控制[J]. 智能系统学报, 2012, 7(5): 429-436. doi: 10.3969/j.issn.1673-4785.201205034
QIAO J F, PANG Z F, HAN H G. Neural network optimal control for wastewater treatment process based on APSO[J]. CAAI Transactions on Intelligent Systems, 2012, 7(5): 429-436. doi: 10.3969/j.issn.1673-4785.201205034
|
[14] |
徐建栋. 遗传算法和神经网络在污水处理控制及监测系统中的应用研究[D]. 重庆: 重庆大学, 2007.
XU J D. Application research of genetic algorithms and artificial neural network in control and monitoring system of waste water treatment[D]. Chongqing: Chongqing University, 2007.
|
[15] |
JAMALIPOUR M, SAVAREH R, GHARIB M, et al. Quantum behaved particle swarm optimization with differential mutation operator applied to WWER-1000 in-core fuel management optimization[J]. Annals of Nuclear Energy, 2013, 54: 134-140. doi: 10.1016/j.anucene.2012.11.008
|
[16] |
CHEN Y, LI L, HAIPENG P, et al. Particle swarm optimizer with two differential mutation[J]. Applied Soft Computing, 2017, 61: 314-330. doi: 10.1016/j.asoc.2017.07.020
|
[17] |
吕振肃, 侯志荣. 自适应变异的粒子群优化算法[J]. 电子学报, 2004(3): 416-420. doi: 10.3321/j.issn:0372-2112.2004.03.016
LV Z S, HOU Z R. Particle swarm optimization with adaptive mutation[J]. Acta Electronica Sinica, 2004(3): 416-420. doi: 10.3321/j.issn:0372-2112.2004.03.016
|
[18] |
孙湘, 周大为, 张希望. 惯性权重粒子群算法模型收敛性分析及参数选择[J]. 计算机工程与设计, 2010, 31(18): 4068-4071. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201018037.htm
SUN X, ZHOU D W, ZHANF X W. Convergence analysis and parameter selection of PSO model with inertia weight[J]. Computer Engineering and Design, 2010, 31(18): 4068-4071. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201018037.htm
|
[19] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536. doi: 10.1038/323533a0
|
[20] |
PARK J B, LEE K S, SHIN J R, et al. A particle swarm optimization for economic dispatch with nonsmooth cost functions[J]. IEEE Transactions on Power Systems, 2005, 20(1): 34-42. doi: 10.1109/TPWRS.2004.831275
|
[21] |
NEYESTANI M, FARSANGI M M, NEZAMABADI-POUR H, et al. A modified particle swarm optimization for economic dispatch with nonsmooth cost functions[J]. IFAC Proceedings Volumes, 2009, 42: 267-272. http://www.emeraldinsight.com/servlet/linkout?suffix=frd3&dbid=16&doi=10.1108%2F03321640710823046&key=10.1109%2FTPWRS.2004.831275
|
[22] |
NIU G Q, YI X H, CHEN C, et al. A novel effluent quality predicting model based on genetic-deep belief network algorithm for cleaner production in a full-scale paper-ma-king wastewater treatment[J]. Journal of Cleaner Production, 2020, 265: 433-441. http://www.sciencedirect.com/science/article/pii/S0959652620318345
|