A Soft Measurement Model of Wastewater Treatment Process Based on BP Neural Network with Improved Particle Swarm Optimization Algorithms
-
Graphical Abstract
-
Abstract
Considering that the BP neural network-based soft sensor model of wastewater treatment process is affected by the nonlinear characteristics of the system and has such problems as low convergence speed and local mini-mum, a hybrid soft measurement PSO-BP model for predicting the effluent chemical oxygen demand (CODeff) and the effluent solid suspended matter (SSeff) in the wastewater treatment process is developed based on BP neural network with improved particle swarm optimization algorithms. This model is compared with models based on genetic algorithm-BP neural network (GA-BP model) and BP neural network. The research results show that when using the PSO-BP model to predict CODeff, the root mean square error (RMSE) and the coefficient of determination (R2) are 3.995 5 and 0.640 1, respectively. When it is used to predict SSeff, RMSE and R2 are 0.650 3 and 0.681 1, respectively. Compared with the BP model and the GA-BP model, the prediction performance of the PSO-BP model on CODeff is improved by 4.49% and 0.44% respectively, the prediction performance of SSeff is improved by 40.11% and 24.77% respectively.
-
-