Citation: | CHEN Mengtao, WANG Junhua, ZHANG Ziming, FAN Xiaoming, NI He, LI Haihang. The Preparation of Compound Hydrolases for Detergent from Excess Activated Sludge[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 65-72. DOI: 10.6054/j.jscnun.2021028 |
[1] |
赵顺顺. 剩余污泥蛋白质提取及其作为动物饲料添加剂的可行性研究[D]. 青岛: 中国海洋大学, 2007.
ZHAO S S. Extraction of protein from waste sludge and its feasibility as an animal feed additive[D]. Qingdao: Ocean University of China, 2007.
|
[2] |
蔡家璇, 张盼月, 张光明. 城市污泥中蛋白质资源化的研究进展[J]. 环境工程, 2019, 37(3): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201903004.htm
CAI J X, ZHANG P Y, ZHANG G M. Research progress on protein resource utilization in municipal sludge[J]. Environmental Engineering, 2019, 37(3): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201903004.htm
|
[3] |
TEOH S K, LI L Y. Feasibility of alternative sewage sludge treatment methods from a lifecycle assessment (LCA) perspective[J]. Journal of Cleaner Production, 2020, 247: 1-20. http://www.sciencedirect.com/science/article/pii/S0959652619343653
|
[4] |
VINAY K T, SHANG L L. Sludge: a waste or renewable source for energy and resources recovery?[J]. Renewable and Sustainable Energy Reviews, 2013, 25: 708-728. doi: 10.1016/j.rser.2013.05.029
|
[5] |
BLANCHARD M, TEIL M J, OLLIVON D, et al. Polycyclic aromatic hydrocarbons and polychlorobiphenyls in wastewaters and sewage sludges from the Paris area (France)[J]. Environmental Research, 2004, 95(2): 184-197. doi: 10.1016/j.envres.2003.07.003
|
[6] |
AL-GHEETHI A, NOMAN E, BALA J D, et al. Removal of pathogenic bacteria from sewagetreated effluent and biosolids for agricultural purposes[J]. Applied Water Science, 2018, 8(2): 74: 92-97.
|
[7] |
LI R D, TENG W C, LI Y L, et al. Potential recovery of phosphorus during the fluidized bed incineration of sewage sludge[J]. Journal of Cleaner Production, 2017, 140(2): 964-970. http://www.sciencedirect.com/science/article/pii/S0959652616308642
|
[8] |
NI H, FAN X M, GUO H N, et al. Comprehensive utilization of activated sludge for preparation of hydrolytic enzymes, polyhydroxyalkanoates and water-retaining organic fertilizer[J]. Preparative Biochemistry & Biotechnology, 2017, 47(6): 611-618. http://www.ncbi.nlm.nih.gov/pubmed/28165864
|
[9] |
赵向阳. 响应面法酶解剩余活性污泥中微生物蛋白质研究[J]. 华南师范大学学报(自然科学版), 2014(46): 85-91. doi: 10.6054/j.jxcnun.2014.06.126
ZHAO X Y. Enzymatic hydrolysis of microbial protein from excess activated sludge by Response Surface Methodology[J]. Journal of South China Normal University (Natural Science Edition), 2014(46): 85-91. doi: 10.6054/j.jxcnun.2014.06.126
|
[10] |
KARN S K, KUMAR A. Hydrolytic enzyme protease in sludge: recovery and its application[J]. Biotechnology and Bioprocess Engineering, 2015, 20(4): 652-661. doi: 10.1007/s12257-015-0161-6
|
[11] |
GARCIA M, URREA J L, COLLADO S, et al. Protein recovery from solubilized sludge by hydrothermal treatments[J]. Waste Management, 2017, 67: 278-287. doi: 10.1016/j.wasman.2017.05.051
|
[12] |
李恺, 叶志平, 李焕文, 等. 表面活性剂CTAC对活性污泥的脱水性能及其机理研究[J]. 华南师范大学学报(自然科学版), 2010(2): 76-81. http://journal-n.scnu.edu.cn/article/id/206
LI K, YE Z P, LI H W et al. Study on dewatering performance and mechanism of surfactant CTAC for activated sludge[J]. Journal of South China Normal University (Natural Science Edition), 2010(2): 76-81. http://journal-n.scnu.edu.cn/article/id/206
|
[13] |
DANIEL J A, FUNSO E O. Experimental investigations on the effects of carbon and nitrogen sources on concomitant amylase and polygalacturonase production byTrichoderma viride, BITRS-1001 in submerged fermentation[J]. Biotechnology Research International, 2012(2012): 904763/1-8. http://pubmedcentralcanada.ca/pmcc/articles/PMC3418636/
|
[14] |
王小骊, 柳爱春, 邹晓庭, 等. 蛋白酶制剂蛋白酶活力的测定福林法: GB/T 28715-2012[S]. 北京: 中国标准出版社, 2012-09-03.
|
[15] |
张渊舒, 罗琴, 攸德伟. 植酸酶颗粒剂生产工艺的研究[J]. 江西农业学报, 2011(5): 128-129, 139. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNY201105041.htm
ZHANG Y S, LUO Q, YOU D W. Study on the production process of phytase granules[J]. JiangXi Journal of Agricultural Sciences, 2011(5): 128-129, 139. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNY201105041.htm
|
[16] |
NABARLATZ D, VONDRYSOVA J, JENICEK P, et al. Hydrolytic enzymes in activated sludge: extraction of protease and lipase by stirring and ultrasonication[J]. Ultrasonics Sonochemistry, 2010, 17(5): 923-931. doi: 10.1016/j.ultsonch.2010.02.006
|
[17] |
KARN S K, KUMAR P, PAN X. Extraction of lipase ansprotease and characterization of activated sludge from pulp and paper industry[J]. Preparative Biochemistry & Biotechnology, 2013, 43(2): 152-162. http://europepmc.org/abstract/MED/23302103
|
[18] |
NABARLATZ D, FRANK S, FONT J, et al. Extraction and purification of hydrolytic enzymes from activated sludge[J]. Resources, Conservation and Recycling, 2012, 59: 9-13. doi: 10.1016/j.resconrec.2011.06.017
|
[19] |
CAPITO F, SKUDAS R, BERND S. Polyelectrolyte-protein interaction at low ionic strength: required chain flexibility depending on protein average charge[J]. Colloid & Polymer Science, 2013, 291(7): 1759-1769. doi: 10.1007/s00396-013-2911-3
|
[20] |
SEKIGUCHI S, HASHIDA Y, YASUKAWA K, et al. Stabilization of bovine intestine alkaline phosphatase bysugars[J]. Bioscience Biotechnology and Biochemistry, 2012, 76(1): 95-100. doi: 10.1271/bbb.110553
|
[21] |
HAN Q H, SUN X H, XU M X, et al. 3-Deazaadenosine, a stabilizer of whole-blood homocysteine content, does not interfere with the single-enzyme homocysteine assay while totally inhibiting the enzyme conversion homocysteine immunoassay[J]. Clinical Chemistry, 2020, 9: 8-9.
|
[22] |
任立均, 刘龙, 刘松, 等. 谷氨酰胺转氨酶热稳定剂优化[J]. 食品与发酵工业, 2018, 44(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX201801001.htm
REN L J, LIU L, LIU S, et al. Optimization of heat stabilizer of transglutaminase[J]. Food and Fermentation Industry, 2018, 44(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX201801001.htm
|
[23] |
ZHANG J, LI M, ZHANG Y. Enhancing the thermostability of recombinant cyclodextrin glucanotransferase via optimized stabilizer[J]. Process Biochemistry, 2018, 67: 64-70. doi: 10.1016/j.procbio.2018.02.006
|
[24] |
PAZHANG M, MEHRNEJAD F, PAZHANG Y, et al. Effect of sorbitol and glycerol on the stability of trypsinand difference between their stabilization effects in the various solvents[J]. Biotechnology and Applied Biochemistry, 2016, 63(2): 206-213. doi: 10.1002/bab.1366
|
[25] |
KUMAR V, CHARI R, SHARMA V K, et al. Modulation of the thermodynamic stability of proteins by polyols: significance of polyol hydrophobicity and impact on the chemical potential of water[J]. International Journal of Pharmaceutics, 2011, 413(1/2): 19-28. http://www.ncbi.nlm.nih.gov/pubmed/21515346
|
[26] |
张京良, 姜言晖, 朱常亮, 等. 复合保护剂对透明质酸酶的稳定性研究[J]. 食品工业科技, 2018(13): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201813005.htm
ZHANG J L, JIANG Y H, ZHU C L, et al. Study on the stability of compound protective agent to hyaluronidase[J]. Food Industry Technology, 2018(13): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201813005.htm
|