• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
SONG Yuanyuan, CAO Hongyu, WEI Zhiyu, WANG Qian, JIANG Ge. A Molecular Docking-based Analysis of the Impact of Ursolic Acid Derivative H21 on Inflammation-Causing Key Proteins[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 59-64. DOI: 10.6054/j.jscnun.2021027
Citation: SONG Yuanyuan, CAO Hongyu, WEI Zhiyu, WANG Qian, JIANG Ge. A Molecular Docking-based Analysis of the Impact of Ursolic Acid Derivative H21 on Inflammation-Causing Key Proteins[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 59-64. DOI: 10.6054/j.jscnun.2021027

A Molecular Docking-based Analysis of the Impact of Ursolic Acid Derivative H21 on Inflammation-Causing Key Proteins

More Information
  • Received Date: March 15, 2020
  • Available Online: April 28, 2021
  • The molecular docking method was used to explore the impact of H21 on key proteins secreting inflammatory factors. Key target proteins were selected from the classic pathways that cause inflammation and H21 and the original ligand with the target protein were docked through Glide molecular docking. The target proteins and key amino acids that were well bound to H21 were screened, and the interaction between them was analyzed. The results showed that H21 bound well to the key protein IRAK1 protein in the Toll-like pathway, and the Glide-gscore is -9.873, better than that of the original ligand. The key amino acids for H21 binding to IRAK1 is Ile218. Theoretical data indicated that the anti-inflammatory drug H21 may act on IRAK1 protein, and by affecting the expression of IRAK1 protein, will exert anti-inflammatory effect. That may provide a theoretical basis for the anti-inflammatory mechanism of H21 and its target of action.
  • [1]
    纪慧. 非甾体抗炎药的临床应用及不良反应分析[J]. 中国现代药物应用, 2018, 12(24): 127-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYY201824075.htm

    JI H. Clinical application and adverse reaction analysis of non-steroidal anti-inflammatory drugs[J]. Chinese Journal of Modern Drug Application, 2018, 12(24): 127-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYY201824075.htm
    [2]
    吴萍, 经纬俊, 刘杰, 等. 32例含非甾体抗炎药成分的药物致严重皮肤不良反应分析[J]. 中国医院用药评价与分析, 2019, 19(8): 1007-1009, 1012. https://www.cnki.com.cn/Article/CJFDTOTAL-YYPF201908033.htm

    WU P, JING W J, LIU J, et al. Analysis on 32 cases of severe cutaneous adverse drug reactions caused by drugs containing non-steroidal anti-inflammatory components[J]. Evaluation and Analysis of Drug-Use in Hospitals of China, 2019, 19(8): 1007-1009, 1012. https://www.cnki.com.cn/Article/CJFDTOTAL-YYPF201908033.htm
    [3]
    杭晔, 杨亚龙. 非甾体抗炎药的心血管不良反应及用药监护[J]. 中西医结合心血管病杂志, 2019, 7(17): 201-201. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJH201917161.htm

    HANG Y, YANG Y L. Cardiovascular adverse reactions of non-steroidal anti-inflammatory drugs and medication monitoring[J]. Cardiovascular Disease Electronic Journal of Integrated Traditional Chinese and Western Medicine, 2019, 7(17): 201-201. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJH201917161.htm
    [4]
    张晖. 非甾体抗炎药的临床应用情况及不良反应研究[J]. 临床医药文献电子杂志, 2018, 5(66): 125-126. https://www.cnki.com.cn/Article/CJFDTOTAL-LCWX201866072.htm

    ZHANG H. Study on clinical application and side effects of non-steroidal anti-inflammatory drugs[J]. Electronic Journal of Clinical Medical Literature, 2018, 5(66): 125-126. https://www.cnki.com.cn/Article/CJFDTOTAL-LCWX201866072.htm
    [5]
    李在兵, 陈军利. 非甾体抗炎药的研发技术进展[J]. 国外医药(抗生素分册), 2017, 38(3): 113-117. doi: 10.3969/j.issn.1001-8751.2017.03.003

    LI Z B, CHEN J L. Progress in research and development of non-steroidal anti-inflammatory drugs[J]. World Notes on Antibiotics, 2017, 38(3): 113-117. doi: 10.3969/j.issn.1001-8751.2017.03.003
    [6]
    刘莹, 王振洲, 李平亚, 等. 天然药物抗炎成分及作用机制的研究进展[J]. 特产研究, 2017, 39(1): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TCYA201701015.htm

    LIU Y, WANG Z Z, LI P Y, et al. Research advances in anti-inflammatory components of natural drugs and its Mechanism[J]. Special Wild Economic Animal and Plant Research, 2017, 39(1): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TCYA201701015.htm
    [7]
    未志俞. 三唑类衍生物的设计合成及其负性肌力作用研究和查尔酮及氨基胍类衍生物的设计合成及抗菌、抗炎作用研究[D]. 吉林: 延边大学, 2017.

    WEI Z Y. Triazole derivatives as inotropic agents; Chalcone and aminoguanidine derivatives as anti-bacterial and anti-inflammatory agents. Design, synthesis and biological evaluation[D]. JiLin: Yanbian University, 2017.
    [8]
    WEI Z Y, CHI K Q, WANG K S, et al. Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents[J]. Bioorganic & Medicinal Chemistry Letters, 2018, 28(10): 1797-1803. http://www.ncbi.nlm.nih.gov/pubmed/29678461
    [9]
    KITCHEN D B, DECORNEZ H, FURR J R, et al. Docking and scoring in virtual screening for drug discovery: methods and applications[J]. Nature Reviews Drug Discovery, 2004, 3(11): 935-949. http://www.nature.com/articles/nrd1549
    [10]
    安明榜. 格列卫(甲磺酸伊马替尼)——一个里程碑式的发现[J]. 药学与临床研究, 2010, 18(2): 101-103. https://www.cnki.com.cn/Article/CJFDTOTAL-YXLY201002003.htm

    AN M B. Gleevec (imatinib mesylate): a landmark discovery[J]. Pharmaceutical and Clinical Research, 2010, 18(2): 101-103. https://www.cnki.com.cn/Article/CJFDTOTAL-YXLY201002003.htm
    [11]
    WANG Z, ZHANG Y L, PINKAS D M, et al. Design, synthesis, and biological evaluation of 3-(Imidazo[1, 2-a]pyrazin-3-ylethynyl)-4-isopropyl-N-(3-((4-methylpiperazin-1-yl)methyl)-5-(trifluoromethyl)phenyl)benzamide as a dual inhibitor of discoidin domain receptors 1 and 2[J]. Journal of Medicinal Chemical, 2018, 61(17): 7977-7990. http://www.ncbi.nlm.nih.gov/pubmed/30075624
    [12]
    CHENG T, LI Q, ZHOU Z, et al. Structure-based virtual screening for drug discovery: a problem-centric review[J]. The AAPS Journal, 2012, 14(1): 133-141. http://europepmc.org/articles/PMC3282008/
    [13]
    曹洪玉, 吴艳华, 周兴智, 等. 虚拟筛选竞争性抑制NDRG3与L-Lactate结合的小分子研究[J]. 华南师范大学学报(自然科学版), 2018, 50(3): 58-64. doi: 10.6054/j.jscnun.2018055

    CAO H Y, WU Y H, ZHOU X Z. Virtual screening competitive inhibitors against the binding of NDRG3 and L-Lactate[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(3): 58-64. doi: 10.6054/j.jscnun.2018055
    [14]
    潘培辰. 分子模拟技术在药物发现中的应用[D]. 杭州: 浙江大学, 2019.

    PAN P C. Application of molecular modelling technologies in drug discovery[D]. Hangzhou: Zhejiang University, 2019.
    [15]
    尚佳锌. 计算机辅助药物设计在天然产物多靶点药物研发中的应用浅谈[J]. 智慧健康, 2019, 5(26): 83-84, 87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJK201926034.htm

    SHANG J X. Application of computer aided drug design in the research and development of natural product multi-target drugs[J]. Smart Healthcare, 2019, 5(26): 83-84, 87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJK201926034.htm
    [16]
    谢治深, 宋军营, 张振强, 等. 计算机辅助药物设计方法及其在新药研发中的应用[J]. 河南大学学报(医学版), 2019, 38(2): 148-152. https://www.cnki.com.cn/Article/CJFDTOTAL-KFYZ201902020.htm

    XIE Z S, SONG J Y, ZHANG Z Q, et al. A brief introduction of computer-aided drug design and its application in the development of drugs[J]. Journal of Henan University(Medical Science), 2019, 38(2): 148-152. https://www.cnki.com.cn/Article/CJFDTOTAL-KFYZ201902020.htm
    [17]
    黎玉梅, 孔研, 于大永, 等. eEF2K蛋白同源模建及其抑制剂小分子的虚拟筛选研究[J]. 中国药房, 2019, 30(16): 2199-2205. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYA201916008.htm

    LI Y M, KONG Y, YU D Y, et al. Study on homology modeling of eEF2K protein and virtual screening of its inhibitors molecules[J]. China Pharmacy, 2019, 30(16): 2199-2205. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYA201916008.htm
    [18]
    陈淑妍, 程诗琦, 马世堂. 基于分子对接技术模拟预测黄连用于清热解毒物质基础[J]. 畜牧与饲料科学, 2015, 36(8): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-NMXK201508008.htm

    CHEN S Y, CHENG S Q, MA S T. Simulation and prediction of material foundation of coptis chinensis franch for clearing away heat and toxic material based on molecular docking technology[J]. Animal Husbandry and Feed Science, 2015, 36(8): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-NMXK201508008.htm
    [19]
    RHYASEN G W, STARCZYNOWSKI D T. IRAK signalling in cancer[J]. British Journal of Cancer, 2015, 112(2): 232-237. http://www.nature.com/articles/bjc2014513
    [20]
    ANTHONEY N, FOLDI I, HIDALGO A. Toll and Toll-like receptor signalling in development[J]. Development, 2018, 145(9): 1-6.
    [21]
    杜婧, 李勇, 高金荣, 等. 白介素1受体相关激酶1(IRAK1)和NF-κB在苯扎氯铵诱导的干眼症小鼠角膜和结膜组织中的表达[J]. 眼科新进展, 2019, 39(3): 223-228. https://www.cnki.com.cn/Article/CJFDTOTAL-XKJZ201903008.htm

    DU J, LI Y, GAO J R, et al. Expression of IRAK1 and NF-κB in keratoconjunctival tissue of mice with dry eye syndrome induced by benzalkonium chloride[J]. Recent Advances in Ophthalmology, 2019, 39(3): 223-228. https://www.cnki.com.cn/Article/CJFDTOTAL-XKJZ201903008.htm
    [22]
    SHIZUO A, KIYOSHI T. Toll-like receptor signalling[J]. Nature Reviews Immunology, 2004, 4(7): 499-511. http://www.cell.com/servlet/linkout?suffix=e_1_5_1_2_1_2&dbid=8&doi=10.1016/j.cell.2005.08.012&key=15229469&cf=
    [23]
    WANG L, QIAO Q, FERRAO R, et al. Crystal structure of human IRAK1[J]. PNAS, 2017, 114(51): 13507-13512. http://europepmc.org/abstract/MED/29208712

Catalog

    Article views (767) PDF downloads (87) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return