• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LI Zhen, YANG Liting, LI Yantao, HUANG Wenjie, YE Jinlun, ZENG Cong. The Effect of Borate on the Properties of Flame-retardant PP Composites[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 35-43. DOI: 10.6054/j.jscnun.2021024
Citation: LI Zhen, YANG Liting, LI Yantao, HUANG Wenjie, YE Jinlun, ZENG Cong. The Effect of Borate on the Properties of Flame-retardant PP Composites[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 35-43. DOI: 10.6054/j.jscnun.2021024

The Effect of Borate on the Properties of Flame-retardant PP Composites

More Information
  • Received Date: April 26, 2020
  • Available Online: April 28, 2021
  • The flame-retardant polypropylene (PP) composites doped with a small amount of colemanite (CB) or zinc borate (ZB) were prepared with the melt blending extrusion method. The influence of CB and ZB on the combustion properties, thermal stability, mechanical properties and crystallization of flame-retardant PP composites filled with melamine-coated ammonium polyphosphate (APP-102) and melamine cyanurate (MCA) were studied. The results showed that a small amount of CB or ZB (2.0%) can effectively improve flame retardancy of PP composites, the LOI value were improved from 25.7% to 27.6% and 27.7% respectively, the UL-94 rating was increased from V-2 to V-0, and the peak heat release (pHRR) and total heat release (HRR) were reduced slightly. CB and ZB could effectively improve the thermal stability of flame-retardant PP composites, and boron could promote the formation of a continuous and compact char layer on the surface. The addition of a small amount of CB or ZB did not deteriorate the mechanical properties of the flame-retardant PP composites, and the tensile modulus and flexural modulus were slightly increased. At the same time, the crystallization rate and crystallinity of flame-retardant PP composites with a small amount of CB or ZB were improved. Therefore, CB was similar to ZB and could be used in synergistic flame retardation of PP.
  • [1]
    IRVINE D J, MCCLUSKEY J A, ROBINSON I M. Fire hazards and some common polymers[J]. Polymer Degradation and Stability, 2000, 67(3): 383-396. doi: 10.1016/S0141-3910(99)00127-5
    [2]
    LU S Y, HAMERTON I. Recent developments in the chemistry of halogen-free flame retardant polymers[J]. Progress in Polymer Science, 2002, 27(8): 1661-1712. doi: 10.1016/S0079-6700(02)00018-7
    [3]
    张立飞, 柳军旺, 韩志东, 等. 氢氧化镁/可膨胀石墨/聚丙烯复合材料的热降解过程与燃烧行为[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 17-22. doi: 10.6054/j.jscnun.2019120

    ZHANG L F, LIU J W, HAN Z D, et al. Thermal degradation and combustion behavior of flame retardant polypropylene with expandable graphite and magnesium hydroxide[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(1): 17-22. doi: 10.6054/j.jscnun.2019120
    [4]
    宋新铺, 陈仪权, 洪文彪, 等. 新型高分子型阻燃抗静电剂的合成及应用[J]. 华南师范大学学报(自然科学版), 2014, 43(5): 59-63. doi: 10.6064/j.jscnun.2014.06.042

    SONG X P, CHEN Y Q, HONG W B, et al. Synthesis and application of the new polymer flame retardant antistatic agent[J]. Journal of South China Normal University(Natural Science Edition), 2014, 43(5): 59-63. doi: 10.6064/j.jscnun.2014.06.042
    [5]
    VIK R. Zinc Borate as an alternative non-halogen flame retardant system in epoxy resins[J]. Chemicke Listy, 2010, 104(8): 798-802. http://www.researchgate.net/publication/286845693_Zinc_Borate_as_an_Alternative_Non-Halogen_Flame_Retardant_System_in_Epoxy_Resins
    [6]
    PAWLOWSKI K H, SCHARTEL B, FICHERA M A, et al. Flame retardancy mechanisms of bisphenol A bis(diphenyl phosphate) in combination with zinc borate in bisphenol A polycarbonate/acrylonitrile-butadiene-styrene blends[J]. Thermochimica Acta, 2010, 498(1/2): 92-99. http://www.sciencedirect.com/science/article/pii/S0040603109003645
    [7]
    YILDIZ B, SEYDIBEYOGLU M O, GUNER F S. Polyurethane-zinc borate composites with high oxidative stability and flame retardancy[J]. Polymer Degradation and Stability, 2009, 94(7): 1072-1075. doi: 10.1016/j.polymdegradstab.2009.04.006
    [8]
    DOGAN M, YILMAZ A, BAYRAMLI E. Synergistic effect of boron containing substances on flame retardancy and thermal stability of intumescent polypropylene composites[J]. Polymer Degradation and Stability, 2010, 95(12): 2584-2588. doi: 10.1016/j.polymdegradstab.2010.07.033
    [9]
    ORHAN T, ISITMAN N A, HACALOGLU J, et al. Thermal degradation mechanisms of aluminium phosphinate, melamine polyphosphate and zinc borate in poly(methyl methacrylate)[J]. Polymer Degradation and Stability, 2011, 96(10): 1780-1787. doi: 10.1016/j.polymdegradstab.2011.07.019
    [10]
    SHEN K K, KOCHESFAHANI S, FREDERIC J. Zinc borates as multifunctional polymer additives[J]. Polymers for Advanced Technologies, 2008, 19(6): 469-474. doi: 10.1002/pat.1119
    [11]
    WU Z, HU Y, SHU W. Effect of ultrafine zinc borate on the smoke suppression and toxicity reduction of a low-density polyethylene/intumescent flame-retardant system[J]. Journal of Applied Polymer Science, 2010, 117(1): 443-449. doi: 10.1002/app.31969
    [12]
    FENG C, ZHANG Y, LIANG D, et al. Influence of zinc borate on the flame retardancy and thermal stability of intumescent flame retardant polypropylene composites[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115(1): 224-232. http://smartsearch.nstl.gov.cn/paper_detail.html?id=817f63e035490c0d58575969ef933b02
    [13]
    GUZEL G, SIVRIKAYA O, DEVECI H. The use of colemanite and ulexite as novel fillers in epoxy composites: influences on thermal and physico-mechanical properties[J]. Composites Part B: Engineering, 2016, 100(1): 1-9. http://smartsearch.nstl.gov.cn/paper_detail.html?id=f875a4111b73eb341f7f0bb6c3d67ebc
    [14]
    ATIKLER U, DEMIR H, TOKATLI F, et al. Optimisation of the effect of colemanite as a new synergistic agent in an intumescent system[J]. Polymer Degradation and Stability, 2005, 91(7): 1563-1570. http://www.sciencedirect.com/science/article/pii/S0141391005004404
    [15]
    KAYNAK C, ISITMAN N A. Synergistic fire retardancy of colemanite, a natural hydrated calcium borate, in high-impact polystyrene containing brominated epoxy and antimony oxide[J]. Polymer Degradation and Stability, 2011, 96(5): 798-807. doi: 10.1016/j.polymdegradstab.2011.02.011
    [16]
    FLORIAN C, AMANDINE V, BELKACEM O, et al. Influence of colemanite on the fire retardancy of ethylene-vinyl acetate and ethylene-methyl acrylate copolymers[J]. Polymer Degradation and Stability, 2017, 114(1): 401-410. http://www.sciencedirect.com/science/article/pii/S0141391017302483
    [17]
    钱立军, 韩鑫磊, 叶志殷, 等. APP/MCA复合阻燃增强聚丙烯的研究[J]. 中国塑料, 2010, 24(5): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSU201005034.htm

    QIAN L J, HAN X L, YE Z Y, et al. Research on polypropylene composites flame-retarded and reinforced by APP/MCA[J]. China Plastics, 2010, 24(5): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSU201005034.htm
    [18]
    GAO D D, WEN X, GUAN Y Y, et al. Flame retardant effect and mechanism of nanosized NiO as synergist in PLA/APP/CSi-MCA composites[J]. Composites Communications, 2020, 17(1): 170-176. http://www.sciencedirect.com/science/article/pii/S2452213919301913
    [19]
    方芳, 刘代俊, 陈建钧. 高聚合度聚磷酸铵的合成及表征[J]. 无机盐工业, 2014, 46(7): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201407010.htm

    FANG F, LIU D J, CHEN J J. Synthesis and characterization of ammonium polyphosphate with high degree of polymerization[J]. Inorganic Chemicals Industry, 2014, 46(7): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201407010.htm
    [20]
    杨淑兰, 肖继君, 李彦涛, 等. 阻燃润滑剂三聚氰胺氰尿酸盐的合成[J]. 河北省科学院学报, 2000, 17(4): 219-223. https://www.cnki.com.cn/Article/CJFDTOTAL-HBKX200004006.htm

    YANG S L, XIAO J J, LI Y T, et al. The synthetic process the flame retardant and lubricant melamine cyanurate acid (MCA)[J]. Journal of the Hebei Academy of Sciences, 2000, 17(4): 219-223. https://www.cnki.com.cn/Article/CJFDTOTAL-HBKX200004006.htm
    [21]
    陆湛泉, 姜向新, 陶四平, 等. 用锥形量热仪研究阻燃聚丙烯的燃烧行为[J]. 合成材料老化与应用, 2012, 41(3): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE201203011.htm

    LU Z Q, JIANG X X, TAO S P, et al. Study of different flame retardant polypropylene combustibility by using cone calorimeter[J]. Synthetic Materials Aging and Application, 2012, 41(3): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE201203011.htm
    [22]
    姜艳峰, 安彦杰, 李瑞, 等. 成核剂对聚丙烯结晶行为的研究[J]. 中国塑料, 2017, 31(10): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSU201710007.htm

    JIANG Y F, AN Y J, LI R, et al. Effects of nucleating agents on crystallization behavior of polypropylene[J]. China Plastics, 2017, 31(10): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSU201710007.htm
  • Cited by

    Periodical cited type(9)

    1. 周英超,王保林,李连强,田瑛,蒙心蕊. 基于聚类和马尔可夫链的货车实际工况构建方法研究. 重庆交通大学学报(自然科学版). 2024(01): 116-124 .
    2. 刘泽奇,朱雄,王庆华,彭良峰,黄刚. 基于用户公共道路大数据的工况分类方法研究. 汽车科技. 2024(06): 53-58 .
    3. 刘继隆,李乐,俞俊. 基于改进K-means聚类的汽车行驶工况构建方法研究. 农业装备与车辆工程. 2023(05): 105-109 .
    4. 崔海龙,车兆伟. 基于应用场景的冷藏车工程工况分析. 农业装备与车辆工程. 2023(07): 139-143 .
    5. 周达左,陶洪峰. 基于改进FCM聚类算法的混合建模方法在苯酚浓度预测中的应用. 化工自动化及仪表. 2023(06): 889-892+899 .
    6. 姜俊昭,杨文豪,彭彬,郭婷,徐业凯,王国卓. 基于能耗加权策略的燃料电池汽车续驶里程预测. 汽车工程. 2023(12): 2357-2365+2329 .
    7. 奇格奇,李丹,段梦媛,关伟,马继辉. 考虑电动公交在途特性的电池状态梯次划分. 中国公路学报. 2022(08): 44-54 .
    8. 陈琳. 面向语音特征提取的英语机器人识别方法构建. 自动化与仪器仪表. 2022(08): 234-239 .
    9. 林小霞,黄顺红,张晓菲,洪瑞安. 基于Zigbee的门禁管理与网络请销假系统研究. 自动化与仪器仪表. 2021(12): 155-159 .

    Other cited types(3)

Catalog

    Article views (546) PDF downloads (62) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return