• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
YANG Wenwen, ZHOU Yulin, WANG Mengyue, ZHANG Liya, LEI Jianfei. The Self-assembled SnO2-FeO(OH) on Natural Graphite Surface as A High-capacity Anode for Lithium Ion Batteries[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 29-34. DOI: 10.6054/j.jscnun.2021023
Citation: YANG Wenwen, ZHOU Yulin, WANG Mengyue, ZHANG Liya, LEI Jianfei. The Self-assembled SnO2-FeO(OH) on Natural Graphite Surface as A High-capacity Anode for Lithium Ion Batteries[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 29-34. DOI: 10.6054/j.jscnun.2021023

The Self-assembled SnO2-FeO(OH) on Natural Graphite Surface as A High-capacity Anode for Lithium Ion Batteries

More Information
  • Received Date: January 03, 2021
  • Available Online: April 28, 2021
  • A stable H2SnO3@Fe(OH)3 colloidal solution is prepared through double hydrolysis. It is self-assembled on the surface of natural graphite under the action of electrostatic adsorption. After the hydrothermal reaction, the H2SnO3@Fe(OH)3 colloidal micelles on the surface of graphite are changed into SnO2-FeO(OH) co-dispersed structures. The structural characterizations show that there is a dense nanostructure coating on the surface of natural graphite after hydrothermal reaction, composed of ultrafine SnO2 nanocrystalline particles (< 6 nm) and amorphous FeO(OH). The electrochemical testing results indicate that the SnO2-FeO(OH) fine nanostructures can not only improve the charge/discharge capacity of graphite, but also improve its cyclic stability. At a current density of 0.1C, the initial cycle efficiency of the modified graphite can reach 77.5%. After 100 cycles, the discharge capacity of modified graphite can be maintained at 384.4 mAh/g, which is 23% higher than that of commercial graphite.
  • [1]
    LEE M L, LI Y H, LIAO S C, et al. Li4Ti5O12-coated graphite anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2013, 112: 529-534. doi: 10.1016/j.electacta.2013.08.150
    [2]
    王灿, 马盼, 祝国梁, 等. 锂离子电池长寿命石墨电极研究现状与展望[J]. 储能科学与技术, 2021, 10(1): 59-65.

    WANG C, MA P, ZHU G L, et al. LIB long life graphite electrode: state-of-art development and perspective[J]. Energy Storage Science and Technology, 2021, 10(1): 59-65.
    [3]
    吴世锋, 徐立宏, 刘琳, 等. 人造石墨粉制备锂离子电池负极材料的工艺技术研究[J]. 炭素技术, 2020, 39(4): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TSJS202004013.htm

    WU S F, XU L H, LIU L, et al. Study on the techniques of anode materials for lithium ion batteries with artificial graphite powder[J]. Carbon Techniques, 2020, 39(4): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TSJS202004013.htm
    [4]
    孟祥德, 张俊红, 王妍妍, 等. 天然石墨负极地改性研究[J]. 化学学报, 2012, 70(6): 812-816. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB201206019.htm

    MENG X D, ZHANG J H, WANG Y Y, et al. Modification of nature graphite anode[J]. Acta Chimica Sinica, 2012, 70(6): 812-816. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB201206019.htm
    [5]
    赵琢, 贾晓川, 李晶, 等. 天然石墨负极地氧化改性[J]. 新型炭材料, 2013, 28(5): 385-390. https://www.cnki.com.cn/Article/CJFDTOTAL-XTCL201305016.htm

    ZHAO Z, JIA X C, LI J, et al. Oxidative modification of natural graphite for use as the anode of a lithium ion battery[J]. New Carbon Materials, 2013, 28(5): 585-390. https://www.cnki.com.cn/Article/CJFDTOTAL-XTCL201305016.htm
    [6]
    邢宝林, 鲍倜傲, 李旭升, 等. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202015009.htm

    XING B L, BAO T A, LI X S, et al. Research progress on structure regulation and surface modification of graphite anode materials for lithium ion batteries[J]. Materials Reports, 2020, 34(15): 15063-15068. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202015009.htm
    [7]
    饶娟, 张盼, 何帅, 等. 天然石墨利用现状及石墨制品综述[J]. 中国科学技术科学, 2017, 47(7): 13-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201701002.htm

    RAO J, ZHANG P, HE S, et al. A review on the utilization of natural graphite and graphite-based materials[J]. Scientia Sinica Technologica, 2017, 47(7): 13-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201701002.htm
    [8]
    张晓波, 叶学海. 包覆处理对提高人造石墨负极材料性能的研究[J]. 无机盐工业, 2015, 47(8): 80-82. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201508028.htm

    ZHANG X B, YE X H. Research on improvement of properties of synthetic graphite anode battery materials by doping treatment[J]. Inorganic Chemicals Industry, 2015, 47(8): 80-82. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201508028.htm
    [9]
    王春梅, 赵海雷, 王静, 等. 有机物热解碳包覆人造石墨负极材料的改性研究[J]. 功能材料, 2012, 43(23): 3208-3210. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201223006.htm

    WANG C M, ZHAO H L, WANG J, et al. Modification on artificial graphite anode material by coating with organic pyrolytic carbon[J]. Journal of Functional Materials, 2012, 43(23): 3208-3210. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201223006.htm
    [10]
    陈素素, 陈新丽, 邓洪. SnO2@C锂离子电池负极材料的制备及其性能[J]. 华南师范大学学报(自然科学版), 2017, 49(2): 11-15. doi: 10.6054/j.jscnun.2017086

    CHEN S S, CHEN X L, DENG H. Preparation and application of SnO2@C as anode material in lithium ion batteries[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(2): 11-15. doi: 10.6054/j.jscnun.2017086
    [11]
    唐致远, 潘丽珠, 刘春燕. 锂离子电池石墨负极材料表面镍包覆[J]. 电池, 2020, 32(4): 194-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI200204001.htm

    TANG Z Y, PAN L Z, LIU C Y. Nickel coating on graphite anode material of lithium ion battery[J]. Battery, 2020, 32(4): 194-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI200204001.htm
    [12]
    苏炽权, 汝强, 石正禄, 等. 生物炭负载金属硒化物复合材料的储锂性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 32-37. doi: 10.6054/j.jscnun.2019082

    SU C Q, RU Q, SHI Z L, et al. The lithium storage performance of biochar-loaded metal selenide composite material[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(5): 32-37. doi: 10.6054/j.jscnun.2019082
    [13]
    耿凯明, 吴俊杰, 耿宏波, 等. 氮掺杂碳层包覆金属钴颗粒与氮掺杂石墨烯纳米复合材料作为高容量锂离子电池负极材料[J]. 无机化学学报, 2016, 32(9): 1495-1502. https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX201609001.htm

    GENG K M, WU J J, GENG H B, et al. N-doped carbon-encapsulated cobalt nanoparticles on N-doped graphene nanosheets as a high-capacity anode material for lithium-ion storage[J]. Chinese Journal of Inorganic Chemistry, 2016, 32(9): 1495-1502. https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX201609001.htm
    [14]
    ZHOU Y L, WANG F, JIN X J, et al. Rapid preparation of ultra-fine and well-dispersed SnO2 nanoparticles via a double hydrolysis reaction for lithium storage[J]. Nano-scale, 2020, 12: 15697-15705. http://pubs.rsc.org/en/content/articlelanding/2020/nr/d0nr02219e
    [15]
    DURÃES L, MOUTINHO A, SEABRA I, et al. Sol-gel synthesis and washing of amorphous g-FeO(OH) xerogels[J]. Materialwissenschaft und Werkstofftechnik, 2012, 43: 427-434. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/02041727528.html
    [16]
    LU J, PENG Q, WANG Z Y, et al. Hematite nanodiscs exposing (001) facets: synthesis, formation mechanism and application for Li-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1: 5232-5237. http://smartsearch.nstl.gov.cn/paper_detail.html?id=0020d426c5aeef4ed1c6bde7ff62aa4b
    [17]
    CAI J G, CHEN S Y, JI M, et al. Organic additive-free synthesis of mesocrystalline hematite nanoplates via two-dimensional oriented attachment[J]. CrystEngComm, 2014, 16: 1553-1559. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=100097586&site=ehost-live
    [18]
    KONG H B, LV C D, YAN C S, et al. Engineering mesoporous single crystals Co-doped Fe2O3 for high performance lithium ion batteries[J]. Inorganic Chemistry, 2017, 56: 7642-7649. http://europepmc.org/abstract/MED/28650157

Catalog

    Article views (480) PDF downloads (82) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return