• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
NIE Jianhua, WANG Jun, HOU Yong, CHENG Jiang, MO Jiaqi. The Preparation of Novel Bone-repair Materials of Gelatin-amorphous Calcium Phosphate through Three-dimensional Printing[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 7-12. DOI: 10.6054/j.jscnun.2021020
Citation: NIE Jianhua, WANG Jun, HOU Yong, CHENG Jiang, MO Jiaqi. The Preparation of Novel Bone-repair Materials of Gelatin-amorphous Calcium Phosphate through Three-dimensional Printing[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 7-12. DOI: 10.6054/j.jscnun.2021020

The Preparation of Novel Bone-repair Materials of Gelatin-amorphous Calcium Phosphate through Three-dimensional Printing

More Information
  • Received Date: October 20, 2020
  • Available Online: April 28, 2021
  • The amorphous calcium phosphate (ACP) modified by gelatin was prepared with the coprecipitation method and then used as prototyping powder for three-dimensional printing (3DP). The 3DP products of bone repair materials were fabricated with deionized water serving as adhesive solution and then characterized with Fourier transform infrared spectroscopy(FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM) separately. The mechanism of ACP stabilized with gelatin was initially discussed and the effect of gelatin content on the chemical stability of ACP and the compressive strength as well as porosity of 3DP products were investigated respectively. The optimal dosage of gelatin was determined to be 0.15% (mass fraction) and the corresponding compressive strength and bone conductibility of the 3DP products were 31.7 MPa and 30.2% respectively, at which a balance was obtained between them and the 3DP products could be widely used for repairing bone defects.
  • [1]
    EPPLE M, GANESAN K, HEUMANN R, et al. Application of calcium phosphate nanoparticles in biomedicine[J]. Journal of Materials Chemistry, 2010, 20(1): 18-23. doi: 10.1039/B910885H
    [2]
    DOROZHKIN S, EPPLE M. Biological and medical signi-ficance of calcium phosphates[J]. Angewandte Chemie International Edition, 2002, 41: 3130-3146. doi: 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1
    [3]
    LEUCHT P, CASTILLO A B, BELLINO M J. Comparison of tricalcium phosphate cement and cancellous autograft as bone void filler in acetabular fractures with marginal impaction[J]. Injury, 2013, 44(7): 969-974. doi: 10.1016/j.injury.2013.04.017
    [4]
    SHEPHERD J H, BEST S M. Calcium phosphate scaffolds for bone repair[J]. Journal of Metals, 2011, 63(4): 83-92. doi: 10.1007/s11837-011-0063-9
    [5]
    PEREZ R, KIM T H, KIM M, et al. Calcium phosphate cements loaded with basic fibroblast growth factor: delivery and in vitro cell response[J]. Journal of Biomedical Materials Research, 2013, 101(4): 923-931. doi: 10.1002/jbm.a.34390
    [6]
    YU W, LI R, LONG J, et al. Use of a three-dimensional printed polylactide-coglycolide/tricalcium phosphate composite scaffold incorporating magnesium powder to enhance bone defect repair in rabbits[J]. Journal of Orthopaedic Translation, 2019, 16: 62-70. doi: 10.1016/j.jot.2018.07.007
    [7]
    CASAS-LUNA M, TAN H, TKACHENKO S, et al. Enhancement of mechanical properties of 3D-plotted tricalcium phosphate scaffolds by rapid sintering[J]. Journal of the European Ceramic Society, 2019, 39(14): 4366-4374. doi: 10.1016/j.jeurceramsoc.2019.05.055
    [8]
    CASTILHO M, MOSEKE C, EWALD A, et al. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects[J]. Biofabrication, 2014, 6: 015006/1-12. http://europepmc.org/abstract/med/24429776
    [9]
    KAKIAGE M, HATANAKA Y, KOBAYASHI H. Fabrication of three-dimensional interconnected nanoporous hydroxyapatite by freeze-thaw process of amorphous calcium phosphate-poly(vinyl alcohol) gel[J]. Journal of Alloys and Compounds, 2017, 696: 566-571. doi: 10.1016/j.jallcom.2016.11.205
    [10]
    CHATTERJEE K, SUN L, CHOW L C, et al. Combinatorial screening of osteoblast response to 3D calcium phosphate/poly(ε-caprolactone) scaffolds using gradients and arrays[J]. Biomaterials, 2011, 32(5): 1361-1369. doi: 10.1016/j.biomaterials.2010.10.043
    [11]
    BECKER A, ZIEGLER A, EPPLE M. The mineral phase in the cuticles of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate, and amorphous calcium phosphate[J]. Dalton Transactions, 2005, 21(10): 1814-1820. http://www.ncbi.nlm.nih.gov/pubmed/15877152
    [12]
    OTSUA M, MATSUDS Y, SUWA Y, et al. Effect of particle size of metastable calcium phosphates on mechanical strength of a novel self-setting bioactive calcium phosphate cement[J]. Journal of Biomedical Materials Research, 1995, 29(1): 25-32. doi: 10.1002/jbm.820290105
    [13]
    聂建华, 吴皎皎, 程江, 等. 热塑性聚氨酯/石膏复合粉末的三维打印特性[J]. 化工进展, 2017, 36(6): 2230-2235. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201706039.htm

    NIE J H, WU J J, CHENG J, et al. Three-dimension printing of thermoplastic polyurethane/gypsum composited powder[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2230-2235. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201706039.htm
    [14]
    POSNER A S, BELTS F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure[J]. Accounts of Chemical Research, 1975, 8(8): 273-281. doi: 10.1021/ar50092a003
    [15]
    LI Y, WILIANA T, TAM K C. Synthesis of amorphous calcium phosphate using various types of cyclodextrins[J]. Materials Research Bulletin, 2007, 42(5): 820-827. doi: 10.1016/j.materresbull.2006.08.027
    [16]
    CROSS K J, HUQ N L, PALAMARA J E, et al. Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes[J]. Journal of Biological Chemistry, 2005, 280(15): 15362-15369. doi: 10.1074/jbc.M413504200
    [17]
    GEORGE A, VEIS A. Phosphorylated proteins and control over apatite nulcleation, crystal growth and inhibition[J]. Chemical Reviews, 2008, 108(11): 4670-4693. doi: 10.1021/cr0782729
    [18]
    ZHANG X J, LIN D Y, YAN X H, et al. Evolution of the magnesium incorporated amorphous calcium phosphate to nano-crystallized hydroxyapatite in alkaline solution[J]. Journal of Crystal Growth, 2011, 336(11): 60-66. http://www.sciencedirect.com/science/article/pii/S0022024811007962
    [19]
    PARK H, CARR W W, ZHU J Y, et al. Single drop impaction on a solid surface[J]. AIChE Journal, 2003, 49(10): 2461-2471. doi: 10.1002/aic.690491003
    [20]
    聂建华, 程江, 杨卓如, 等. 羧基丙烯酸树脂微乳液的制备及其在3D打印中的应用[J]. 合成树脂及塑料, 2017, 34(3): 85-87. doi: 10.3969/j.issn.1002-1396.2017.03.026

    NIE J H, CHENG J, YANG Z R, et al. Preparation of carboxyl acrylic resin microemulsion and its application in 3D printing[J]. China Synthetic Resin and Plastics, 2017, 34(3): 85-87. doi: 10.3969/j.issn.1002-1396.2017.03.026
    [21]
    聂建华, 周志盛, 霍泽荣, 等. 弹性产品用聚酰胺树脂打印通用型粉末材料及黏结溶液的研究[J]. 塑料工业, 2014, 42(1): 122-125. doi: 10.3969/j.issn.1005-5770.2014.01.029

    NIE J H, ZHOU Z S, HUO Z R, et al. Research on polyamide resin as prototyping powder and binder solution for elastic products via 3D printing[J]. China Plastics Industry, 2014, 42(1): 122-125. doi: 10.3969/j.issn.1005-5770.2014.01.029
    [22]
    GELLI R, RIDI F, BAGLIONI P. The importance of being amorphous: calcium and magnesium phosphates in the human body[J]. Advances in Colloid and Interface Science, 2019, 269: 219-235. doi: 10.1016/j.cis.2019.04.011
    [23]
    BENIASH E, METZLER R A, LAM R S, et al. Transient amorphous calcium phosphate in forming enamel[J]. Journal of Structural Biology, 2009, 166(2): 133-143. doi: 10.1016/j.jsb.2009.02.001

Catalog

    Article views (591) PDF downloads (71) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return