• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZENG Xinghui, XU Xiangcong, LI Xiao, WANG Mingyi, ZHONG Junping, XIONG Honglian. Quick and Automatic Segmentation of Retinal Layers in OCT Images Using Residual and Attention U-net[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 1-6. DOI: 10.6054/j.jscnun.2021019
Citation: ZENG Xinghui, XU Xiangcong, LI Xiao, WANG Mingyi, ZHONG Junping, XIONG Honglian. Quick and Automatic Segmentation of Retinal Layers in OCT Images Using Residual and Attention U-net[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 1-6. DOI: 10.6054/j.jscnun.2021019

Quick and Automatic Segmentation of Retinal Layers in OCT Images Using Residual and Attention U-net

More Information
  • Received Date: June 17, 2020
  • Available Online: April 28, 2021
  • Computer image processing technology is used to segment the retinal image automatically and compute the thickness of each layer. The thickness can be used to assess various retinal diseases directly. In order to segment retinal layers quickly and accurately, a new segmentation method combining RAU-net (Residual and Attention U-net, RAU-net) and graph search is proposed. This method adds residual block structure and attention gate structure to the basis of U-net. The residual block structure avoids the problems of gradient disappearance and gradient explosion effectively while obtaining advanced features by building deeper networks. Models trained with attention gate structure highlights the learning of salient features of retinal images. The segmentation results obtained after the model prediction gain nine boundary regions of interest, and then the graph search method is used to optimize the layer boundary for accurate retinal layer. The results show that the error between the RAU-net algorithm and manual segmentation is just about one pixel, and it only takes 4 s to complete segmentation of an OCT retinal image. Combining RAU-net and the graph search algorithm, the method provides a fast and accurate quantitative analysis tool for the clinical diagnosis and treatment of retinal diseases.
  • [1]
    HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography[J]. Science, 1991, 254: 1178-1181. doi: 10.1126/science.1957169
    [2]
    朱良慧, 曾毛毛, 赵佳玮, 等. 基于OCT图像的组织散射系数提取方法及其应用[J]. 华南师范大学学报(自然科学版), 2016, 48(4): 31-34. doi: 10.6054/j.jscnun.2016.05.008

    ZHU L H, ZENG M M, ZHAO J W, et al. Quantify wound skin by extracting tissue scattering coefficient from OCT image[J]. Joumal of South China Normal University (Natural Science Edition), 2016, 48(4): 31-34. doi: 10.6054/j.jscnun.2016.05.008
    [3]
    READ S A, ALONSO-CANEIRO D, VINCENT S J. Longitudinal changes in macular retinal layer thickness in pediatric populations: myopic vs non-myopic eyes[J]. PloS One, 2017, 12(6): e0180462/1-22. http://pubmedcentralcanada.ca/pmcc/articles/PMC5491256/
    [4]
    CHAUHAN B C, VIANNA J R, SHARPE G P, et al. Differential effects of aging in the macular retinal layers, neuroretinal rim, and peripapillary retinal nerve fiber layer[J]. Ophthalmology, 2020, 127(2): 177-185. doi: 10.1016/j.ophtha.2019.09.013
    [5]
    BUSSEL I I, WOLLSTEIN G, SCHUMAN J S. OCT for glaucoma diagnosis, screening and detection of glaucoma progression[J]. British Journal of Ophthalmology, 2014, 98(S2): 15-19.
    [6]
    LEE W J, KIM Y K, KIM Y W, et al. Rate of macular ganglion cell-inner plexiform layer thinning in glaucomatous eyes with vascular endothelial growth factor inhibition[J]. Journal of Glaucoma, 2017, 26(11): 980-986. doi: 10.1097/IJG.0000000000000776
    [7]
    NOVOSEL J, THEPASS G, LEMIJ H G, et al. Loosely coupled level sets for simultaneous 3D retinal layer segmentation in optical coherence tomography[J]. Medical Image Analysis, 2015, 26(1): 146-158. doi: 10.1016/j.media.2015.08.008
    [8]
    SUN Y, NIU S, GAO X, et al. Adaptive-guided-coupling-probability level set for retinal layer segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(11): 3236-3247. doi: 10.1109/JBHI.2020.2981562
    [9]
    GARVIM M K, ABRAMOFF M D, WU X, et al. Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images[J]. IEEE Transactions on Medical Imaging, 2009, 28(9): 1436-1447. doi: 10.1109/TMI.2009.2016958
    [10]
    CHIU S J, LI X T, NICHOLAS P, et al. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation[J]. Optics Express, 2010, 18: 19413-19428. doi: 10.1364/OE.18.019413
    [11]
    FANG L, CUNEFARE D, WANG C, et al. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search[J]. Biomedical Optics Express, 2017, 8(5): 2732-2744. doi: 10.1364/BOE.8.002732
    [12]
    LANG A, CARASS A, HAUSER M, et al. Retinal layer segmentation of macular OCT images using boundary classification[J]. Biomedical Optics Express, 2013, 4(7): 1133-1152. doi: 10.1364/BOE.4.001133
    [13]
    LIU Y, CARASS A, SOLOMON S D, et al. Multi-layer fast level set segmentation for macular OCT[C]//Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging. Washington: IEEE, 2018: 1445-1448.
    [14]
    唐小煜, 黄进波, 冯洁文, 等. 基于U-net和YOLOv4的绝缘子图像分割与缺陷检测[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 15-21. doi: 10.6054/j.jscnun.2020088

    TANG X Y, HUANG J B, FENG J W, et al. Image segmentation and defect detection of insulators based on U-net and YOLOv4[J]. Joumal of South China Normal University (Natural Science Edition), 2020, 52(6): 15-21. doi: 10.6054/j.jscnun.2020088
    [15]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016: 770-778.
    [16]
    DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271. doi: 10.1007/BF01386390
    [17]
    HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J/OL]. (2012-07-03)[2020-06-18]. https://arxiv.org/pdf/1207.0580.
    [18]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of neural information processing systems. Long Beach: NIPS, 2017: 5998-6008.
    [19]
    OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-net: learning where to look for the pancreas[J/OL]. (2018-05-20)[2020-06-18]. https://arxiv.org/pdf/1804.03999.

Catalog

    Article views (972) PDF downloads (137) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return