Citation: | ZENG Xinghui, XU Xiangcong, LI Xiao, WANG Mingyi, ZHONG Junping, XIONG Honglian. Quick and Automatic Segmentation of Retinal Layers in OCT Images Using Residual and Attention U-net[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 1-6. DOI: 10.6054/j.jscnun.2021019 |
[1] |
HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography[J]. Science, 1991, 254: 1178-1181. doi: 10.1126/science.1957169
|
[2] |
朱良慧, 曾毛毛, 赵佳玮, 等. 基于OCT图像的组织散射系数提取方法及其应用[J]. 华南师范大学学报(自然科学版), 2016, 48(4): 31-34. doi: 10.6054/j.jscnun.2016.05.008
ZHU L H, ZENG M M, ZHAO J W, et al. Quantify wound skin by extracting tissue scattering coefficient from OCT image[J]. Joumal of South China Normal University (Natural Science Edition), 2016, 48(4): 31-34. doi: 10.6054/j.jscnun.2016.05.008
|
[3] |
READ S A, ALONSO-CANEIRO D, VINCENT S J. Longitudinal changes in macular retinal layer thickness in pediatric populations: myopic vs non-myopic eyes[J]. PloS One, 2017, 12(6): e0180462/1-22. http://pubmedcentralcanada.ca/pmcc/articles/PMC5491256/
|
[4] |
CHAUHAN B C, VIANNA J R, SHARPE G P, et al. Differential effects of aging in the macular retinal layers, neuroretinal rim, and peripapillary retinal nerve fiber layer[J]. Ophthalmology, 2020, 127(2): 177-185. doi: 10.1016/j.ophtha.2019.09.013
|
[5] |
BUSSEL I I, WOLLSTEIN G, SCHUMAN J S. OCT for glaucoma diagnosis, screening and detection of glaucoma progression[J]. British Journal of Ophthalmology, 2014, 98(S2): 15-19.
|
[6] |
LEE W J, KIM Y K, KIM Y W, et al. Rate of macular ganglion cell-inner plexiform layer thinning in glaucomatous eyes with vascular endothelial growth factor inhibition[J]. Journal of Glaucoma, 2017, 26(11): 980-986. doi: 10.1097/IJG.0000000000000776
|
[7] |
NOVOSEL J, THEPASS G, LEMIJ H G, et al. Loosely coupled level sets for simultaneous 3D retinal layer segmentation in optical coherence tomography[J]. Medical Image Analysis, 2015, 26(1): 146-158. doi: 10.1016/j.media.2015.08.008
|
[8] |
SUN Y, NIU S, GAO X, et al. Adaptive-guided-coupling-probability level set for retinal layer segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(11): 3236-3247. doi: 10.1109/JBHI.2020.2981562
|
[9] |
GARVIM M K, ABRAMOFF M D, WU X, et al. Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images[J]. IEEE Transactions on Medical Imaging, 2009, 28(9): 1436-1447. doi: 10.1109/TMI.2009.2016958
|
[10] |
CHIU S J, LI X T, NICHOLAS P, et al. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation[J]. Optics Express, 2010, 18: 19413-19428. doi: 10.1364/OE.18.019413
|
[11] |
FANG L, CUNEFARE D, WANG C, et al. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search[J]. Biomedical Optics Express, 2017, 8(5): 2732-2744. doi: 10.1364/BOE.8.002732
|
[12] |
LANG A, CARASS A, HAUSER M, et al. Retinal layer segmentation of macular OCT images using boundary classification[J]. Biomedical Optics Express, 2013, 4(7): 1133-1152. doi: 10.1364/BOE.4.001133
|
[13] |
LIU Y, CARASS A, SOLOMON S D, et al. Multi-layer fast level set segmentation for macular OCT[C]//Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging. Washington: IEEE, 2018: 1445-1448.
|
[14] |
唐小煜, 黄进波, 冯洁文, 等. 基于U-net和YOLOv4的绝缘子图像分割与缺陷检测[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 15-21. doi: 10.6054/j.jscnun.2020088
TANG X Y, HUANG J B, FENG J W, et al. Image segmentation and defect detection of insulators based on U-net and YOLOv4[J]. Joumal of South China Normal University (Natural Science Edition), 2020, 52(6): 15-21. doi: 10.6054/j.jscnun.2020088
|
[15] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016: 770-778.
|
[16] |
DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271. doi: 10.1007/BF01386390
|
[17] |
HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J/OL]. (2012-07-03)[2020-06-18]. https://arxiv.org/pdf/1207.0580.
|
[18] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of neural information processing systems. Long Beach: NIPS, 2017: 5998-6008.
|
[19] |
OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-net: learning where to look for the pancreas[J/OL]. (2018-05-20)[2020-06-18]. https://arxiv.org/pdf/1804.03999.
|