• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CAI Dongli, ZHONG Qinghua, ZHU Yongsheng, ZHANG Han. EEG Emotion Recognition Based on Hybrid Neural Networks[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 109-118. DOI: 10.6054/j.jscnun.2021017
Citation: CAI Dongli, ZHONG Qinghua, ZHU Yongsheng, ZHANG Han. EEG Emotion Recognition Based on Hybrid Neural Networks[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 109-118. DOI: 10.6054/j.jscnun.2021017

EEG Emotion Recognition Based on Hybrid Neural Networks

More Information
  • Received Date: August 01, 2020
  • Available Online: March 23, 2021
  • A hybrid neural network (3DCNN-BLSTM) based on a 3-Dimensional Convolutional Neural Network (3D-CNN) combined with a Bi-directional Long Short-term Memory Neural Network (BLSTM) is proposed to preserve the spatial information of the EEG while taking full advantage of its time-related information. Emotion re-cognition experiments on DEAP and SEED datasets are carried out to evaluate the classification performance of the model. The experiment results show that the 3DCNN-BLSTM model can effectively learn the correlation between EEG multi-channels and time dimension information and improve the performance of emotion classification. The ave-rage accuracy of emotion recognition of arousal and valence in the two-classification experiments on DEAP dataset are 93.56% and 93.21% respectively; the average accuracy of emotion recognition in the four-classification experiments on DEAP dataset is 90.97%; and the average accuracy of emotion recognition in the three-classification experiments on SEED dataset is 98.90%.
  • [1]
    MEI H, XU X M. EEG based emotion classification using convolutional neural network[C]//Proceedings of the IEEE International Conference on Security, Pattern Analy-sis, and Cybernetics. Shenzhen: IEEE, 2017: 130-135.
    [2]
    TRIPATHI S, ACHARYA S, SHARMA R D, et al. Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 4746-4752.
    [3]
    MOON S, JANG S, LEE J, et al. Convolutional neural network approach for Eeg-based emotion recognition using brain connectivity and its spatial information[C]//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Calgary, Canada: IEEE, 2018: 2556-2560.
    [4]
    KWON Y H, SHIN S B, KIM S, et al. Electroencephalogra-phy based fusion two-dimensional (2D)-convolution neural networks (CNN) model for emotion recognition system[J]. Sensors, 2018, 18(5): 1383/1-13. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982398/
    [5]
    KOELSTRA S, MUHL C, SOLEYMANI M, et al. DEAP: a database for emotion analysis using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 3(1): 18-31. doi: 10.1109/T-AFFC.2011.15
    [6]
    SALAMA E S, ELKHORIBI R A, SHOMAN M, et al. EEG-based emotion recognition using 3D convolutional neural networks[J]. International Journal of Advanced Computer Science and Applications, 2018, 9(8): 329-337.
    [7]
    ALHAGRY S, FAHMY A A, ELKHORIBI R A, et al. Emotion recognition based on EEG using LSTM recurrent neural network[J]. International Journal of Advanced Computer Science and Applications, 2017, 8(10): 355-358. http://www.researchgate.net/publication/320802497_Emotion_Recognition_based_on_EEG_using_LSTM_Recurrent_Neural_Network
    [8]
    XING X F, LI Z Q, XU T Y, et al. SAE+LSTM: a new framework for emotion recognition from multi-channel EEG[J]. Frontiers in Neurorobotics, 2019, 13: 37/1-14. http://www.researchgate.net/publication/333730290_SAELSTM_A_New_Framework_for_Emotion_Recognition_From_Multi-Channel_EEG
    [9]
    WANG Y X, QIU S, LI J P, et al. EEG-based emotion recognition with similarity learning network[C]//Proceedings of 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Berlin: IEEE, 2019: 1209-1212.
    [10]
    YANG Y L, WU Q F, QIU M, et al. Emotion recognition from multi-channel EEG through parallel convolutional recurrent neural network[C]//Proceedings of 2018 International Joint Conference on Neural Networks. Rio de Janeiro, Brazil: IEEE, 2018: 1-7.
    [11]
    SHEN F Y, DAI G J, LIN G, et al. EEG-based emotion recognition using 4D convolutional recurrent neural network[J]. Cognitive Neurodynamics, 2020, 14(6): 815-828. doi: 10.1007/s11571-020-09634-1
    [12]
    SHEYKHIVAND S, MOUSAVI Z, REZAⅡ T Y, et al. Recognizing emotions evoked by music using CNN-LSTM Networks on EEG Signals[J]. IEEE Access, 2020, 8: 139332-139345. doi: 10.1109/ACCESS.2020.3011882
    [13]
    YIN Z, ZHAO M Y, WANG Y X, et al. Recognition of emotions using multimodal physiological signals and an ensemble deep learning model[J]. Computer Methods and Programs in Biomedicine, 2017, 140: 93-110. doi: 10.1016/j.cmpb.2016.12.005
    [14]
    ZHENG W L, LU B L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J]. IEEE Transactions on Autonomous Mental Development, 2015, 7(3): 162-175. doi: 10.1109/TAMD.2015.2431497
    [15]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [16]
    GRAVES A, SCHMIDHUBER J. Framewise phoneme cla-ssification with bidirectional LSTM and other neural network architectures[J]. Neural networks, 2005, 18(5/6): 602-610. http://www.sciencedirect.com/science/article/pii/S0893608005001206
    [17]
    MATURANA D, SCHERER S. Voxnet: a 3d convolutional neural network for real-time object recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE, 2015: 922-928.
    [18]
    YANG Y L, WU Q F, FU Y, et al. Continuous convolutional neural network with 3d input for EEG-based emotion recognition[C]//International Conference on Neural Information Processing. Cham, Switzerland: Springer, 2018: 433-443.
    [19]
    CHUNG S Y, YOON H J. Affective classification using Bayesian classifier and supervised learning[C]//Proceedings of 2012 12th International Conference on Control, Automation and Systems. JeJu Island, South Korea: IEEE, 2012: 1768-1771.
    [20]
    CHAO H, DONG L, LIU Y L, et al. Emotion recognition from multiband EEG signals using CapsNet[J]. Sensors, 2019, 19(9): 2212/1-16. http://www.ncbi.nlm.nih.gov/pubmed/31086110
    [21]
    ZHUANG N, ZENG Y, TONG L, et al. Emotion recognition from EEG signals using multidimensional information in EMD Domain[J]. BioMed Research International, 2017, 2017: 8317357/1-9. http://www.ncbi.nlm.nih.gov/pubmed/28900626
    [22]
    YANG H, HAN J, MIN K, et al. A multi-column CNN model for emotion recognition from EEG signals[J]. Sensors, 2019, 19(21): 4736/1-12. http://www.ncbi.nlm.nih.gov/pubmed/31683608
    [23]
    ZUBAIR M, YOON C. EEG based classification of human emotions using discrete wavelet transform[M]//IT Convergence and Security 2017. Singapore: Springer, 2018: 21-28.
    [24]
    JADHAV N, MANTHALKAR R, JOSHI Y. Electroencephalography based emotion recognition using gray-level co-occurrence matrix features[C]//RAMAN B, KUMAR S, ROY P, et al, ed. Proceedings of the International Conference on Computer Vision and Image Processing. Singapore: Springer, 2016: 335-343.
    [25]
    HATAMIKIA S, NASRABADI A M. Recognition of emotional states induced by music videos based on nonlinear feature extraction and SOM classification[C]//Procee-dings of 2014 21th Iranian Conference on Biomedical Engineering (ICBME). Tehran, Iran: IEEE, 2014: 333-337.
    [26]
    ZHANG X Y, WANG W R, SHEN C Y, et al. Extraction of EEG components based on time - frequency blind source sepa-ration[C]//Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Cham, Switzerland: Springer, 2017: 3-10.
    [27]
    MARTÍNEZ-RODRIGO A, GARCÍA-MARTÍNEZ B, ALCARAZ R, et al. Study of electroencephalographic signal regularity for automatic emotion recognition[C]//Proceedings of the International Conference on Ubiquitous Computing and Ambient Intelligence. Cham, Switzerland: Springer, 2017: 766-777.
    [28]
    LI J P, ZHANG Z X, HE H G. Hierarchical convolutional neural networks for EEG-based emotion recognition[J]. Cognitive Computation, 2018, 10(2): 368-380. doi: 10.1007/s12559-017-9533-x
    [29]
    魏琛, 陈兰岚, 张傲. 基于集成卷积神经网络的脑电情感识别[J]. 华东理工大学学报(自然科学版), 2019, 45(4): 614-622. https://www.cnki.com.cn/Article/CJFDTOTAL-HLDX201904014.htm

    WEI C, CHEN L L, ZHANG A. Emotion recognition of EEG based on ensemble convolutional neural networks[J]. Journal of East China University of Science and Technology, 2019, 45(4): 614-622. https://www.cnki.com.cn/Article/CJFDTOTAL-HLDX201904014.htm
    [30]
    田莉莉, 邹俊忠, 张见, 等. 基于改进的卷积神经网络脑电信号情感识别[J]. 计算机工程与应用, 2019, 55(22): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201922015.htm

    TIAN L L, ZOU J Z, ZHANG J, et al. Emotion recognition of EEG signal based on improved convolutional neural network[J]. Computer Engineering and Applications, 2019, 55(22): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201922015.htm

Catalog

    Article views (1514) PDF downloads (150) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return