Citation: | SHI Xinran, ZHANG Qizhi, ZHAO Gansen, ZHENG Weiping. A Network Attack Traffic Detection System Based on a Small Sample and Imbalanced Data[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 100-108. DOI: 10.6054/j.jscnun.2021016 |
[1] |
付钰, 李洪成, 吴晓平, 等. 基于大数据分析的APT攻击检测研究综述[J]. 通信学报, 2015, 36(11): 1-14. doi: 10.11959/j.issn.1000-436x.2015184
FU Y, LI H C, WU X P, et al. Detecting APT attacks: a survey from the perspective of big data analysis[J]. Journal on Communications, 2015, 36(11): 1-14. doi: 10.11959/j.issn.1000-436x.2015184
|
[2] |
张蕾, 崔勇, 刘静, 等. 机器学习在网络空间安全研究中的应用[J]. 计算机学报, 2018, 41(9): 1943-1975.
ZHANG L, CUI Y, LIU J, et al. Application of machine learning in cyberspace security research[J]. Chinese Journal of Computers, 2018, 41(9): 1943-1975.
|
[3] |
张玉清, 董颖, 柳彩云, 等. 深度学习应用于网络空间安全的现状、趋势与展望[J]. 计算机研究与发展, 2018, 55(6): 1117-1142.
ZHANG Y Q, DONG Y, LIU C Y, et al. Situation, trends and prospects of deep learning applied to cyberspace security[J]. Journal of Computer Research and Development, 2018, 55(6): 1117-1142.
|
[4] |
WANG M, LU Y, QIN J. A dynamic MLP-based DDoS attack detection method using feature selection and feedback[J]. Computers & Security, 2020, 88: 101645/1-14. http://www.sciencedirect.com/science/article/pii/S0167404819301890
|
[5] |
NASEER S, SALEEM Y, KHALID S, et al. Enhanced network anomaly detection based on deep neural networks[J]. IEEE Access, 2018, 6: 48231-48246. doi: 10.1109/ACCESS.2018.2863036
|
[6] |
KIM T, CHO S. Web traffic anomaly detection using C-LSTM neural networks[J]. Expert Systems with Applications, 2018, 106: 66-76. doi: 10.1016/j.eswa.2018.04.004
|
[7] |
赵双, 陈曙晖. 基于机器学习的流量识别技术综述与展望[J]. 计算机工程与科学, 2018, 40(10): 1746-1756. doi: 10.3969/j.issn.1007-130X.2018.10.005
ZHAO S, CHEN S H. Review: traffic identification based on machine learning[J]. Computer Engineering & Science, 2018, 40(10): 1746-1756. doi: 10.3969/j.issn.1007-130X.2018.10.005
|
[8] |
CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'05). Piscataway, NJ: IEEE, 2005: 539-546.
|
[9] |
KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[C]//Proceedings of 32nd International Conference on Machine Learning. New York: ACM, 2015: 2252-2259.
|
[10] |
TAO R, GAVVES E, SMEULDERS A. Siamese instance search for tracking[J/OJ]. ArXiv, (2016-05-19)[2020-02-05]. https://arxiv.org/abs/1605.05863.
|
[11] |
BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[J/OL]. ArXiv, (2016-09-14)[2020-02-05]. https://arxiv.org/abs/1606.09549.
|
[12] |
TAN C Q, SUN F C, KONG T, et al. A survey on deep transfer learning[C]//Proceedings of Artificial Neural Networks and Machine Learning-ICANN 2018. Berlin: Springer, 2018: 270-279.
|
[13] |
SUN G L, LIANG L L, CHEN T, et al. Network traffic classification based on transfer learning[J]. Computers & Electrical Engineering, 2018, 69: 920-927. http://www.sciencedirect.com/science/article/pii/S004579061732829X
|
[14] |
诸葛建伟, 唐勇, 韩心慧, 等. 蜜罐技术研究与应用进展[J]. 软件学报, 2013, 24(4): 167-184.
ZHUGE J W, TANG Y, HAN X H, et al. Honeypot technology research and application[J]. Journal of Software, 2013, 24(4): 167-184.
|
[15] |
HADSELL R, CHOPRA S, LECUN Y. Dimensionality reduction by learning an invariant mapping[C]//Procee-dings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2006: 1735-1742.
|
[16] |
WANG W, ZHU M, ZENG X W, et al. Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of 2017 IEEE International Conference on Information Networking. Pisca-taway, NJ: IEEE, 2017: 712-717.
|
[17] |
AGARAP A F. Towards building an intelligent anti-malware system: a deep learning approach using support vector machine (SVM) for malware classification[J/OL]. ArXiv, (2019-02-07)[2020-02-05]. https://arxiv.org/abs/1801.00318.
|
[18] |
LIN W H, LIN H C, WANG P, et al. Using convolutional neural networks to network intrusion detection for cyber threats[C]//Proceedings of 2018 IEEE International Conference on Applied System Invention. Piscataway, NJ: IEEE, 2018: 1107-1110.
|
1. |
管钰晴,唐冬梅,傅云霞,孙佳媛,韩志国,张波,孔明,曹程明,雷李华. 穆勒椭偏标定方法中LM算法研究. 红外与激光工程. 2020(08): 168-176 .
![]() | |
2. |
汪娟,冀丽娜,白芸,黄佐华. 单波长椭偏法测量各向异性晶体光学参数的研究. 激光与光电子学进展. 2020(15): 224-232 .
![]() |