Citation: | GAO Yunlong, LIN Rongrui, SHE Lianbing, LI Aijing. Blow-up of Solutions to the m-Laplacian Type Wave Equation with Strong Delay Terms[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 94-99. DOI: 10.6054/j.jscnun.2021015 |
[1] |
STAVRAKAKIS N M, STYLIANOU A N. Global attractor for some wave equations with p-Laplacian damping type[J]. Journal of Differential Equations, 2011, 24(1/2): 159-176. http://www.ams.org/mathscinet-getitem?mr=2759356
|
[2] |
WEI D, LIU Y. Analytic and finite element solutions of the power-law Euler-Bernoulli beams[J]. Finite Elements in Analysis and Design, 2012, 52: 31-40. doi: 10.1016/j.finel.2011.12.007
|
[3] |
PEI P, RAMMAHA M A, TOUNDYKOV D. Weak solutions and blow-up for wave equations of p-Laplacian type with supercritical sources[J]. Journal of Mathematical Physics, 2015, 56(8): 1315-1331. http://smartsearch.nstl.gov.cn/paper_detail.html?id=7c66dd49065de35c32302704c396891c
|
[4] |
NAKAO M. Existence of global decaying solutions to the initial boundary value problem for quasilinear viscoelastic equations of p-Laplacian type with a derivative nonlineari ty[J]. Kyushu Journal of Mathematics, 2016, 70(1): 63-82. doi: 10.2206/kyushujm.70.063
|
[5] |
RAPOSO C A, CATTAI A P, RIBEIRO J O. Global solution and asymptotic behaviour for a wave equation type p-Laplacian with memory[J]. Open Journal of Mathematical Analysis, 2018, 2(2): 156-171. http://www.researchgate.net/publication/331633519_Global_Solution_and_Asymptotic_Behaviour_for_a_Wave_Equation_type_p-Laplacian_with_Memory
|
[6] |
MESSAOUDI S A, FAREH A, DOUDI N. Well posedness and exponential stability in a wave equation with a strong damping and a strong delay[J]. Journal of Mathematical Physics, 2016, 57(11): 103-121. doi: 10.1063/1.4966551
|
[7] |
FENG B W. General decay for a viscoelastic wave equation with strong time-dependent delay[J]. Boundary Va-lue Problems, 2017, 7: 1-11. http://www.biomedcentral.com/openurl?doi=10.1186/s13661-017-0789-6
|
[8] |
MOHAMMAD K, MUHAMMAD I M. A blow-up result in a Cauchy viscoelastic problem with a delayed strong daming[J]. Dynamics of Continuous, Discrete and Impulsive Systems: Series B, 2018, 25: 357-367.
|
[9] |
黄东兰, 陈明玉, 林晨. 带变指标反应项的p-Laplacian方程解的爆破[J]. 厦门大学学报(自然科学版), 2014, 53(6): 785-787. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201406008.htm
HUANG D L, CHEN M Y, LIN C. Blow-up of solutions to p-Laplacian equations with variable exponents in reaction term[J]. Journal of Xiamen University(Natural Science), 2014, 53(6): 785-787. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201406008.htm
|
[10] |
MOHMMAD K, SALIM M. Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay[J]. Applicable Analysis, 2018, 99(3): 530-547. doi: 10.1080/00036811.2018.1504029?src=recsys&
|
[11] |
MESSAOUDI S A, HOUARI B S. Global non-existence of solutions of a class of wave equations with non-linear damping and source terms[J]. Mathematical Methods in the Applied Sciences, 2004, 27: 1687-1696. doi: 10.1002/mma.522
|
[12] |
徐瑰瑰, 王利波, 林国广. 带时滞项的Boussinesq-Beam方程的拉回吸引子[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 104-111. doi: 10.6054/j.jscnun.2020016
XU G G, WANG L B, LIN G G. Pullback attractors for the Boussinesq-Beam equation with time delay[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(1): 104-111. doi: 10.6054/j.jscnun.2020016
|
[13] |
程建玲. 偏微分方程中常用的不等式及其证明[J]. 枣庄学院学报, 2016, 33(5): 43-46. doi: 10.3969/j.issn.1004-7077.2016.05.008
CHENG J L. Inequalities in partial differential equations and their proofs[J]. Journal of Zaozhuang University, 2016, 33(5): 43-46. doi: 10.3969/j.issn.1004-7077.2016.05.008
|
[14] |
高云天, 霍云霄. 积分形式的Minkowski不等式和逆Minkowski不等式的证明[J]. 吉林省教育学院学报, 2016, 32(8): 172-174. https://www.cnki.com.cn/Article/CJFDTOTAL-JLJB201608055.htm
GAO Y T, HUO Y X. Proof of Minkowski inequality and inverse Minkowski inequality in integral form[J]. Journal of Educational Institute of Jilin Province, 2016, 32(8): 172-174. https://www.cnki.com.cn/Article/CJFDTOTAL-JLJB201608055.htm
|