Citation: | LI Ning, WANG Lina. An Analysis of the Factors in Total Water Consumption Based on Random Forest Regression Algorithm: A Case Study of Guangdong Province[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 78-84. DOI: 10.6054/j.jscnun.2021012 |
[1] |
LAM K L, LANT P A, O'BRIEN K R, et al. Comparison of water-energy trajectories of two major regions experiencing water shortage[J]. Journal of Environment Management, 2016, 181: 403-412. http://www.ncbi.nlm.nih.gov/pubmed/27395015
|
[2] |
魏孟露. 节水型社会建设效果评估——以上海市闵行区为例[J]. 能源与节能, 2013(12): 104-105. doi: 10.3969/j.issn.2095-0802.2013.12.046
WEI M L. An effect evaluation of a water-saving society——taking Minhang District Shanghai for example[J]. Energy and Energy Conservation, 2013(12): 104-105. doi: 10.3969/j.issn.2095-0802.2013.12.046
|
[3] |
张志红. 保定市徐水区工业节水思路、措施与效果[J]. 河北水利, 2020(1): 22-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HBLS202001013.htm
|
[4] |
梁振东, 何晓静, 方红远. 基于聚类线性回归法的区域用水量影响因素分析[J]. 海河水利, 2016(3): 32-36;42. doi: 10.3969/j.issn.1004-7328.2016.03.012
LIANG Z D, HE X J, FANG H Y. Analysis on impacting factors of regional water resources utilization based on clusterwise linear regression method[J]. Haihe Water Resources, 2016(3): 32-36;42. doi: 10.3969/j.issn.1004-7328.2016.03.012
|
[5] |
张陈俊, 章恒全, 陈其勇, 等. 中国用水量变化的影响因素分析——基于LMDI方法[J]. 资源科学, 2016, 38(7): 1308-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201607012.htm
ZHANG C J, ZHANG H Q, CHEN Q Y, et al. Factors influencing water use changes based on LMDI methods[J]. Resources Science, 2016, 38(7): 1308-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201607012.htm
|
[6] |
成晋松, 吕惠进, 刘玲. 太原市用水量影响因素的灰色关联分析[J]. 水资源与水工程学报, 2012, 23(2): 109-111;115. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201202029.htm
CHENG J S, LV H J, LIU L. Grey relational analysis of influence factors on water consumption in Taiyuan City[J]. Journal of Water Resources and Water Engineering, 2012, 23(2): 109-111;115. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201202029.htm
|
[7] |
张标, 刘秀丽. 我国用水量变动影响因素的结构分解分析[J]. 管理评论, 2015(5): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWGD201505002.htm
ZHANG B, LIU X L. Structural decomposition analysis of impacting factors of China's water consumption changes[J]. Business Review, 2015(5): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWGD201505002.htm
|
[8] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
|
[9] |
崔东文, 金波. 基于随机森林回归算法的水生态文明综合评价[J]. 水利水电科技进展, 2014, 34(5): 56- 60;79. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201405012.htm
CUI D W, JIN B. Comprehensive evaluation of water ecological civilization based on random forests regression algorithm[J]. Advances in Science and Technology of Water Resources, 2014, 34(5): 56-60;79. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201405012.htm
|
[10] |
赖成光, 陈晓宏, 赵仕威, 等. 基于随机森林的洪灾风险评价模型及其应用[J]. 水利学报, 2015, 46(1): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201501010.htm
LAI C G, CHEN X H, ZHAO S W, et al. A flood risk assessment model based on Random Forest and its application[J]. Journal of Hydraulic Engineering, 2015, 46 (1): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201501010.htm
|
[11] |
张冰, 周步祥, 石敏. 基于灰色关联分析与随机森林回归模型的短期负荷预测[J]. 水电能源科学, 2017(4): 203-207. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201704051.htm
ZHANG B, ZHOU B X, SHI M. Short-term load forecasting based on grey correlation analysis and random forest regression model[J]. Water Resources and Power, 2017(4): 203-207. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201704051.htm
|
[12] |
GRAY K R, ALJABAR P, HECKEMANN R A, et al. Random forest-based similarity measures for multi-modal classification of Alzheimer's disease[J]. Neuroimage, 2013, 65: 167-175. doi: 10.1016/j.neuroimage.2012.09.065
|
[13] |
STROBL C, BOULESTEIX A L, ZEILEIS A, et al. Bias in random forest variable importance measures: illustrations, sources and a solution[J]. BMC Bioinformatics, 2007, 8(1): 1-21. doi: 10.1186/1471-2105-8-1
|
[14] |
白鹏飞, 安琪, Nicolaas Frans de ROOIJ, 等. 基于多模型融合的互联网信贷个人信用评估方法[J]. 华南师范大学学报(自然科学版), 2017, 49(6): 119-123. doi: 10.6054/j.jscnun.2017170
BAI P F, AN Q, DE ROOIJ N F, et al. Internet credit personal credit assessing method based on multi-model ensemble[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(6): 119-123. doi: 10.6054/j.jscnun.2017170
|
[15] |
广东省水利厅. 水资源公报(2018)[EB/OL]. (2019-07-02)[2020-08-13]. http://slt.gd.gov.cn/gs2018/content/post_2528678.html.
|
[16] |
LIAW A, WIENER M. Classification and regression by random forest[J]. R News, 2002, 2(3): 18-22. http://www.mendeley.com/catalog/classification-regression-randomforest/
|
[17] |
武晓岩, 李康. 基因表达数据判别分析的随机森林方法[J]. 中国卫生统计, 2006, 23(6): 491-494. doi: 10.3969/j.issn.1002-3674.2006.06.004
WU X Y, LI K. The application of random forests for the classification of gene expression data[J]. Chinese Journal of Health Statistics, 2006, 23(6): 491-494. doi: 10.3969/j.issn.1002-3674.2006.06.004
|
[18] |
杨沐晞. 基于随机森林模型的二手房价格评估研究[D]. 长沙: 中南大学, 2012.
YANG M X. The price evaluation research of second-hand house based on the random forest model[D]. Changsha: Cenrtal South University, 2012.
|
[19] |
方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TJLT201103007.htm
FANG K N, WU J B, ZHU J P, et al. A review of technolo-gies on random forests[J]. Statistics & Information Forum, 2011, 26(3): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TJLT201103007.htm
|
[20] |
梁慧玲, 林玉蕊, 杨光, 等. 基于气象因子的随机森林算法在塔河地区林火预测中的应用[J]. 林业科学, 2016, 52(1): 89-98 https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201601011.htm
LIANG H L, LIN Y R, YANG G, et al. Application of random forest algorithm on the forest fire prediction in Tahe area based on meteorological factors[J]. Forestry Science, 2016, 52(1): 89-98. https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201601011.htm
|
[21] |
袁久和, 祁春节. 基于熵值法的湖南省农业可持续发展能力动态评价[J]. 长江流域资源与环境, 2013, 22(2): 152-157. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201302005.htm
YUAN J H, QI C J. Dynamic assessment of regional agricultural sustainability of human province based on entropy method[J]. Resources and Environment in the Yangtze Basin, 2013, 22(2): 152-157. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201302005.htm
|
[22] |
郭显光. 改进的熵值法及其在经济效益评价中的应用[J]. 系统工程理论与实践, 1998, 18(12): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL812.018.htm
GUO X G. Application of improved entropy method in evaluation of economic result[J]. Systems Engineering Theory & Practice, 1998, 18(12): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL812.018.htm
|
[23] |
吴丹, 朱玉春. 基于随机森林方法的农村公共产品供给能力影响因素分析——以农田水利基础设施为例[J]. 财贸研究, 2012, 23(2): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-CMYJ201202009.htm
WU D, ZHU Y C. Influence factors on supply capability of rural public goods based on random forest: taking irrigation and water conservancy as an example[J]. Finance and Trade Research, 2012, 23(2): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-CMYJ201202009.htm
|
[24] |
国家统计局. 中国统计年鉴(1999—2020)[EB/OL]. (2020-02-28)[2020-08-13]. http://www.stats.gov.cn/tjsj/ndsj/.
|
[25] |
金巍, 章恒全, 张洪波, 等. 城镇化进程中人口结构变动对用水量的影响[J]. 资源科学, 2018, 40(4): 784-796. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201804012.htm
JIN W, ZHANG H Q, ZHANG H B, et al. The influence of population structural change on water consumption in urbanization[J]. Resources Science, 2018, 40(4): 784-796. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201804012.htm
|
[26] |
KUNDZEWICZ Z W, KRYSANOVA V, BENESTAD R E, et al. Uncertainty in climate change impacts on water resources[J]. Environmental Science & Policy, 2018, 79: 1-8. http://www.sciencedirect.com/science/article/pii/S146290111730638X
|
[27] |
FAN L X, GAI L T, TONG Y, et al. Urban water consumption and its influencing factors in China: evidence from 286 cities[J]. Journal of Cleaner Production, 2017, 166: 124-133. http://www.sciencedirect.com/science/article/pii/S0959652617317602
|
[28] |
广东省水利厅. 粤水资讯[EB/OL]. (2020-03-20)[2020-08-13]. http://slt.gd.gov.cn/yszx/.
|
[29] |
广东统计信息网. 广东统计年鉴2019年[EB/OL]. (2019-09-29)[2020-08-13]. http://stats.gd.gov.cn/gdtjnj/content/post_2639622.html.
|