Citation: | LAI Lili, JIN Huan, DUAN Huaying, ZOU Zhengzhi. Macrophage's Promotion of Cervical Cancer Cell Resistance to SN-38[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 63-69. DOI: 10.6054/j.jscnun.2021010 |
[1] |
ARBYN M, WEIDERPASS E, BRUNI L, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis[J]. The Lancet Global Health, 2019, 8(2): 191-203. http://www.sciencedirect.com/science/article/pii/S2214109X19304826
|
[2] |
COHEN P, JHINGRAN A, OAKNIN A, et al. Cervical cancer[J]. The Lance, 2019, 393(10167): 169-182. doi: 10.1016/S0140-6736(18)32470-X
|
[3] |
SARFATI D, DYER R, SAM L, et al. Cancer control in the Pacific: big challenges facing small island states[J]. The Lancet Oncology, 2019, 20(9): 475-492. doi: 10.1016/S1470-2045(19)30400-0
|
[4] |
KAWATO Y, AONUMA M, HIROTA Y, et al. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11[J]. Cancer Research, 1991, 51(16): 4187-4191. http://chromsci.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=canres&resid=51/16/4187
|
[5] |
SUN X F, FERREUD L, SVANVIK J, et al. Anticancer effect of SN-38 on colon cancer cell lines with different metastatic potential[J]. Oncology Reports, 2008, 19(6): 1493-1498. http://europepmc.org/abstract/med/18497955
|
[6] |
FRANK A, AGAMA K, ROY A, et al. Characterization of DNA topoisomerase I in three SN-38 resistant human colon cancer cell lines reveals a new pair of resistance-associated mutations[J]. Journal of Experimental & Clinical Cancer Research, 2016, 35(1): 56-69. http://europepmc.org/articles/PMC4815242/
|
[7] |
CHEN P, LUO X, NIE P, et al. CQ synergistically sensitizes human colorectal cancer cells to SN-38/CPT-11 through lysosomal and mitochondrial apoptotic pathway via p53-ROS cross-talk[J]. Free Radical Biology and Medicine, 2017, 104: 280-297. doi: 10.1016/j.freeradbiomed.2017.01.033
|
[8] |
CARDILLO T M, GOVINDAN S V, SHARKEY R M, et al. Sacituzumab govitecan (IMMU-132), an anti-trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers[J]. Bioconjugate Chemistry, 2015, 26(5): 919-931. doi: 10.1021/acs.bioconjchem.5b00223
|
[9] |
BARDIA A, MAYER I A, VAHDAT L T, et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer[J]. New England Journal of Medicine, 2019, 380(8): 741-751. doi: 10.1056/NEJMoa1814213
|
[10] |
GOLDENBERG D M, SHARKEY R M. Antibody-drug conjugates targeting TROP-2 and incorporating SN-38: a case study of anti-TROP-2 sacituzumab govitecan[J]. Taylor & Francis, 2019, 11(6): 987-995. doi: 10.1080/19420862.2019.1632115
|
[11] |
LIU Y, XING H, WENG D, et al. Inhibition of Akt signaling by SN-38 induces apoptosis in cervical cancer[J]. Cancer Letters, 2009, 274(1): 47-53. doi: 10.1016/j.canlet.2008.08.037
|
[12] |
OHARA T, KOBAYASHI Y, YOSHIDA A, et al. Combination of irinotecan (CPT-11) and nedaplatin (NDP) for recurrent patients with uterine cervical cancer[J]. International Journal of Clinical Oncology, 2012, 18(6): 1102-1106. http://europepmc.org/abstract/MED/23095879
|
[13] |
SHOJI T, TAKATORI E, FURUTAKE Y, et al. Phase Ⅱ clinical study of neoadjuvant chemotherapy with CDDP/CPT-11 regimen in combination with radical hysterectomy for cervical cancer with a bulky mass[J]. International Journal of Clinical Oncology, 2016, 21(6): 1120-1127. doi: 10.1007/s10147-016-1008-7
|
[14] |
CHEN Y B, SONG Y C, DU W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression[J]. Journal of Biomedical Science, 2019, 26(1): 1-13. doi: 10.1186/s12929-018-0495-4
|
[15] |
HU H, TU W, CHEN Y, et al. The combination of PKM2 overexpression and M2 macrophages infiltration confers a poor prognosis for PDAC patients[J]. Journal of Cancer, 2020, 11(8): 2022-2031. doi: 10.7150/jca.38981
|
[16] |
JIN J Y, WANG Y, MA Q L, et al. LAIR-1 activation inhibits inflammatory macrophage phenotype in vitro[J]. Cellular Immunology, 2018, 331(1): 78-84. http://www.sciencedirect.com/science/article/pii/S0008874918302508
|
[17] |
邹争志, 聂培培, 倪艺榕, 等. 硫链丝菌素诱导非小细胞肺癌细胞自噬性死亡[J]. 激光生物学报, 2014, 23(1): 33-37. doi: 10.3969/j.issn.1007-7146.2014.01.006
ZOU Z Z, NIE P P, NI Y R, et al. Thiostrepton induces autophagic cell death in non-small-cell lung cancer cells[J]. Acta Laser Biology Sinica, 2014, 23(1): 33-37. doi: 10.3969/j.issn.1007-7146.2014.01.006
|
[18] |
YANG W, SOARES J, GRENINGER P, et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells[J]. Nucleic Acids Research, 2013, 41(1): 955-961. http://www.tandfonline.com/servlet/linkout?suffix=CIT0012&dbid=8&doi=10.1080%2F17460441.2018.1437136&key=23180760
|
[19] |
彭程, 薛海军, 常晓晓, 等. 不同品种黄皮果汁的品质及抗氧化能力[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 70-76. doi: 10.6054/j.jscnun.2020011
PENG C, XUE H J, CHANG X X, et al. The quality and antioxidant capacity of fruit Juice of different wampee cultivars[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(1): 70-76. doi: 10.6054/j.jscnun.2020011
|
[20] |
QIAO J H, CHEN Y B, MI Y J, et al. Macrophages confer resistance to BET inhibition in triple-negative breast cancer by upregulating IKBKE[J]. Biochemical Pharmacology, 2020, 10(180): 114-126. http://www.sciencedirect.com/science/article/pii/S0006295220303622
|
[21] |
PATHRIA P, JUDITH A, VARNER J A, et al. Targeting tumor-associated macrophages in cancer[J]. Trends in Immunology, 2019, 40(4): 310-327. doi: 10.1016/j.it.2019.02.003
|
[22] |
WANG Q, STEGER A, MAHNER S, et al. The formation and therapeutic update of tumor-associated macrophages in cervical cancer[J]. International Journal of Molecular Sciences, 2019, 20(13): 1059-1069.
|
[23] |
BAHRAMI A, HASANZADEH M, HASSANIAN S M, et al. The potential value of the PI3K/Akt/mTOR signaling pathway for assessing prognosis in cervical cancer and as a target for therapy[J]. Journal of Cellular Biochemistry, 2017, 118(12): 4163-4169. doi: 10.1002/jcb.26118
|
[24] |
DAI B, YU R, FAN M, et al. HMQ-T-F2 suppresses migration of the human cervical cancer HeLa cells by reversing EMT via the PI3K/Akt signaling pathway[J]. Oncology Reports, 2019, 42(4): 1451-1458. http://www.researchgate.net/publication/334637080_HMQ-T-F2_suppresses_migration_of_the_human_cervical_cancer_HeLa_cells_by_reversing_EMT_via_the_PI3KAkt_signaling_pathway
|
[25] |
D'ERRICO G, ALONSO N M, MIREIA V, et al. Tumor-associated macrophage-secreted 14-3-3ζ signals via AXL to promote pancreatic cancer chemoresistance[J]. Oncogene, 2019, 38(27): 5469-5485. doi: 10.1038/s41388-019-0803-9
|
[26] |
LI D, JI H, NIU X, et al. Tumor-associated macrophages secrete CC-chemokine ligand 2 and induce tamoxifen resistance by activating PI3K/Akt/mTOR in breast cancer[J]. Cancer Science, 2020, 111(1): 47-58. doi: 10.1111/cas.14230
|
[27] |
WEI C, YANG C, WANG S, et al. M2 macrophages confer resistance to 5-fluorouracil in colorectal cancer through the activation of CCL22/PI3K/AKT signaling[J]. OncoTargets and Therapy, 2019, 12(1): 3051-3063. http://www.researchgate.net/publication/332487487_M2_macrophages_confer_resistance_to_5-fluorouracil_in_colorectal_cancer_through_the_activation_of_CCL22PI3KAKT_signaling
|