Citation: | ZHANG Peng, WU Honghai, WEI Yanfu, LU Pengcheng. The Synthesis and Fenton Catalytic Performance of the Fe/S Coupling Catalyst[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 50-55. DOI: 10.6054/j.jscnun.2021008 |
[1] |
AHMED S, RASUL M G, MARTENS W N, et al. Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments[J]. Desalination, 2010, 261: 3-18. doi: 10.1016/j.desal.2010.04.062
|
[2] |
WEI X, WU H, HE G, et al. Efficient degradation of phenol using iron-montmorillonite as a Fenton catalyst: importance of visible light irradiation and intermediates[J]. Journal of Hazardous Materials, 2017, 321: 408-416. doi: 10.1016/j.jhazmat.2016.09.031
|
[3] |
CHUNG J S, SOHN H J. Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries[J]. Journal of Power Sources, 2002, 108: 226-231. doi: 10.1016/S0378-7753(02)00024-1
|
[4] |
WANG J, NG S H, WANG G X, et al. Synthesis and characterization of nanosize cobalt sulfide for rechargeable lithium batteries[J]. Journal of Power Sources, 2006, 159: 287-290. doi: 10.1016/j.jpowsour.2006.04.092
|
[5] |
WILLEKE G, BLENK O, KLOC C, et al. Preparation and electrical transport properties of pyrite(FeS2) single crystals[J]. Journal of Alloys and Compounds, 1992, 178: 181-191. doi: 10.1016/0925-8388(92)90260-G
|
[6] |
WU R, ZHENG Y F, ZHANG X G, et al. Hydrothermal synthesis and crystal structure of pyrite[J]. Journal of Crystal Growth, 2004, 266: 523-527. doi: 10.1016/j.jcrysgro.2004.02.020
|
[7] |
HUO L, XIE W, QIAN T, et al. Reductive immolobilization of pertechnetate in soil and groundwater using synthetic pyrite nanoparticles[J]. Chemosphere, 2017, 174: 456-465. doi: 10.1016/j.chemosphere.2017.02.018
|
[8] |
PIMENTEL M, OTURAN N, DEZOTTI M, et al. Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode[J]. Applied Catalysis B: Environmental, 2008, 83: 140-149. doi: 10.1016/j.apcatb.2008.02.011
|
[9] |
SATTERFIELD C N, BONNELL A H. Interferences in titanium sulfate method for hydrogen peroxide[J]. Analytical Chemistry, 1955, 27(7): 1174-1175. doi: 10.1021/ac60103a042
|
[10] |
ZHU L, RICHARDSON B J, YU Q M. Anisotropic growth of iron pyrite FeS2 nanocrystals via oriented attachment[J]. Chemistry of Materials, 2015, 27: 3516-3525. doi: 10.1021/acs.chemmater.5b00945
|
[11] |
SHI F X, ZHANG L, YANG J W, et al. Polymorphous FeS corrosion products of pipeline steel under highly sour conditions[J]. Corrosion Science, 2016, 102: 103-113. doi: 10.1016/j.corsci.2015.09.024
|
[12] |
ZHANG N Q, CHEN J Y, FANG Z Q, et al. Ceria accelerated nanoscale zerovalent iron assisted heterogenous Fenton oxidation of tetracycline[J]. Journal of Chemical Engineering, 2019, 369: 588-599. doi: 10.1016/j.cej.2019.03.112
|
[13] |
TAN L, LU S, FANG Z, et al. Enhanced reductive debromination and subsequent oxidative ring-opening of decabromodiphenyl ether by integrated catalyst of nZVI supported on magnetic Fe3O4 nanoparticles[J]. Applied Catalysis B: Environmental, 2017, 200: 200-210. doi: 10.1016/j.apcatb.2016.07.005
|
[14] |
JIN H, TIAN X K, NIE Y L, et al. Oxygen vacancy promoted heterogeneous Fenton-like degradation of ofloxacin at pH 3.2-9.0 by Cu substituted magnetic Fe3O4@FeOOH nanocomposite[J]. Environmental Science & Technology, 2017, 51: 12699-12706.
|
[15] |
TODA K, TANAKA T, TSUDA Y, et al. Sulfurized limonite as material for fast decomposition of organic compounds by heterogeneous Fenton reaction[J]. Journal of Hazardous Materials, 2014, 278: 426-432. doi: 10.1016/j.jhazmat.2014.06.033
|
[16] |
TONIAZZO V, MUSTIN C, PORTAL J M, et al. Elemental sulfur at the pyrite surfaces: speciation and quantification[J]. Applied Surface Science, 1999, 143: 229-237. doi: 10.1016/S0169-4332(98)00918-0
|
[17] |
CHEN H, ZHANG Z, YANG Z, et al. Heterogeneous Fenton-like catalytic degradation of 2, 4-dichlorophenoxyacetic acid in water with FeS[J]. Chemical Engineering Journal, 2015, 273: 481-489. doi: 10.1016/j.cej.2015.03.079
|
[18] |
XU L, WANG J. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol[J]. Journal of Hazardous Materials, 2011, 186: 256-264. doi: 10.1016/j.jhazmat.2010.10.116
|
[19] |
CAI W, CHEN F, SHEN X, et al. Enhanced catalytic degradation of AO7 in the CeO2-H2O2 system with Fe3+ doping[J]. Applied Catalysis B: Environmental, 2010, 101: 160-168. doi: 10.1016/j.apcatb.2010.09.031
|
[20] |
ZAZO J A, CASAS J A, MOHEDANO A F, et al. Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst[J]. Applied Catalysis B: Environmental, 2006, 65: 261-268. doi: 10.1016/j.apcatb.2006.02.008
|
[21] |
CHEN R, PIGNATELLO J J. Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds[J]. Environmental Science & Technology, 1997, 31(8): 2399-2406.
|
[22] |
CARMEM L P S, ZANTA, FRIEDRICH L C, MACHULEK A, et al. Surfactant degradation by a catechol-driven Fenton reaction[J]. Journal of Hazardous Materials, 2010, 178: 258-263. doi: 10.1016/j.jhazmat.2010.01.071
|
[23] |
GULSHAN F, YANAGIDA S, KAMESHIMA Y, et al. Various factors affecting photodecomposition of methylene blue by iron-oxides in an oxalate solution[J]. Water Research, 2010, 44(9): 2876-2884. doi: 10.1016/j.watres.2010.01.040
|
[24] |
LU M C, CHEN J N, HUANG H H. Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide[J]. Chemosphere, 2002, 46(1): 131-136. doi: 10.1016/S0045-6535(01)00076-5
|
[25] |
SUN Y, DANISH M, ALI M, et al. Trichloroethene degradation by nanoscale CaO2 activated with Fe(Ⅱ)/FeS: the role of FeS and the synergistic activation mechanism of Fe(Ⅱ)/FeS[J]. Chemical Engineering Journal, 2020, 394: 124830/1-9. doi: 10.1016/j.cej.2020.124830
|
[26] |
NAKAGAWA H, YAMAGUCHI E. Influence of oxalic acid formed on the degradation of phenol by Fenton reagent[J]. Chemosphere, 2012, 88(2): 183-187. doi: 10.1016/j.chemosphere.2012.02.082
|