• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHANG Peng, WU Honghai, WEI Yanfu, LU Pengcheng. The Synthesis and Fenton Catalytic Performance of the Fe/S Coupling Catalyst[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 50-55. DOI: 10.6054/j.jscnun.2021008
Citation: ZHANG Peng, WU Honghai, WEI Yanfu, LU Pengcheng. The Synthesis and Fenton Catalytic Performance of the Fe/S Coupling Catalyst[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 50-55. DOI: 10.6054/j.jscnun.2021008

The Synthesis and Fenton Catalytic Performance of the Fe/S Coupling Catalyst

More Information
  • Received Date: February 17, 2020
  • Available Online: March 23, 2021
  • FeSO4 and Na2S were synthesized into a composite Fenton catalyst with low temperature vacuum freeze-drying. It is composed of NaFe2OH(SO3)2·H2O, FeS and FeS2. The composite was characterized with XRD and XPS. Then phenol was used as the target organic pollutant to study the composite's catalytic degradation of it. The results showed that the removal rate of phenol reached 97% after 30 min degradation under the conditions of 1 g/L phenol, 0.3 g/L catalyst, 50 mmol/L H2O2 and pH 4.0, indicating that the Fenton catalyst had a good performance in the removal of high-concentration phenol. This composite can have a good prospect of application in organic pollutant removal.
  • [1]
    AHMED S, RASUL M G, MARTENS W N, et al. Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments[J]. Desalination, 2010, 261: 3-18. doi: 10.1016/j.desal.2010.04.062
    [2]
    WEI X, WU H, HE G, et al. Efficient degradation of phenol using iron-montmorillonite as a Fenton catalyst: importance of visible light irradiation and intermediates[J]. Journal of Hazardous Materials, 2017, 321: 408-416. doi: 10.1016/j.jhazmat.2016.09.031
    [3]
    CHUNG J S, SOHN H J. Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries[J]. Journal of Power Sources, 2002, 108: 226-231. doi: 10.1016/S0378-7753(02)00024-1
    [4]
    WANG J, NG S H, WANG G X, et al. Synthesis and characterization of nanosize cobalt sulfide for rechargeable lithium batteries[J]. Journal of Power Sources, 2006, 159: 287-290. doi: 10.1016/j.jpowsour.2006.04.092
    [5]
    WILLEKE G, BLENK O, KLOC C, et al. Preparation and electrical transport properties of pyrite(FeS2) single crystals[J]. Journal of Alloys and Compounds, 1992, 178: 181-191. doi: 10.1016/0925-8388(92)90260-G
    [6]
    WU R, ZHENG Y F, ZHANG X G, et al. Hydrothermal synthesis and crystal structure of pyrite[J]. Journal of Crystal Growth, 2004, 266: 523-527. doi: 10.1016/j.jcrysgro.2004.02.020
    [7]
    HUO L, XIE W, QIAN T, et al. Reductive immolobilization of pertechnetate in soil and groundwater using synthetic pyrite nanoparticles[J]. Chemosphere, 2017, 174: 456-465. doi: 10.1016/j.chemosphere.2017.02.018
    [8]
    PIMENTEL M, OTURAN N, DEZOTTI M, et al. Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode[J]. Applied Catalysis B: Environmental, 2008, 83: 140-149. doi: 10.1016/j.apcatb.2008.02.011
    [9]
    SATTERFIELD C N, BONNELL A H. Interferences in titanium sulfate method for hydrogen peroxide[J]. Analytical Chemistry, 1955, 27(7): 1174-1175. doi: 10.1021/ac60103a042
    [10]
    ZHU L, RICHARDSON B J, YU Q M. Anisotropic growth of iron pyrite FeS2 nanocrystals via oriented attachment[J]. Chemistry of Materials, 2015, 27: 3516-3525. doi: 10.1021/acs.chemmater.5b00945
    [11]
    SHI F X, ZHANG L, YANG J W, et al. Polymorphous FeS corrosion products of pipeline steel under highly sour conditions[J]. Corrosion Science, 2016, 102: 103-113. doi: 10.1016/j.corsci.2015.09.024
    [12]
    ZHANG N Q, CHEN J Y, FANG Z Q, et al. Ceria accelerated nanoscale zerovalent iron assisted heterogenous Fenton oxidation of tetracycline[J]. Journal of Chemical Engineering, 2019, 369: 588-599. doi: 10.1016/j.cej.2019.03.112
    [13]
    TAN L, LU S, FANG Z, et al. Enhanced reductive debromination and subsequent oxidative ring-opening of decabromodiphenyl ether by integrated catalyst of nZVI supported on magnetic Fe3O4 nanoparticles[J]. Applied Catalysis B: Environmental, 2017, 200: 200-210. doi: 10.1016/j.apcatb.2016.07.005
    [14]
    JIN H, TIAN X K, NIE Y L, et al. Oxygen vacancy promoted heterogeneous Fenton-like degradation of ofloxacin at pH 3.2-9.0 by Cu substituted magnetic Fe3O4@FeOOH nanocomposite[J]. Environmental Science & Technology, 2017, 51: 12699-12706.
    [15]
    TODA K, TANAKA T, TSUDA Y, et al. Sulfurized limonite as material for fast decomposition of organic compounds by heterogeneous Fenton reaction[J]. Journal of Hazardous Materials, 2014, 278: 426-432. doi: 10.1016/j.jhazmat.2014.06.033
    [16]
    TONIAZZO V, MUSTIN C, PORTAL J M, et al. Elemental sulfur at the pyrite surfaces: speciation and quantification[J]. Applied Surface Science, 1999, 143: 229-237. doi: 10.1016/S0169-4332(98)00918-0
    [17]
    CHEN H, ZHANG Z, YANG Z, et al. Heterogeneous Fenton-like catalytic degradation of 2, 4-dichlorophenoxyacetic acid in water with FeS[J]. Chemical Engineering Journal, 2015, 273: 481-489. doi: 10.1016/j.cej.2015.03.079
    [18]
    XU L, WANG J. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol[J]. Journal of Hazardous Materials, 2011, 186: 256-264. doi: 10.1016/j.jhazmat.2010.10.116
    [19]
    CAI W, CHEN F, SHEN X, et al. Enhanced catalytic degradation of AO7 in the CeO2-H2O2 system with Fe3+ doping[J]. Applied Catalysis B: Environmental, 2010, 101: 160-168. doi: 10.1016/j.apcatb.2010.09.031
    [20]
    ZAZO J A, CASAS J A, MOHEDANO A F, et al. Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst[J]. Applied Catalysis B: Environmental, 2006, 65: 261-268. doi: 10.1016/j.apcatb.2006.02.008
    [21]
    CHEN R, PIGNATELLO J J. Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds[J]. Environmental Science & Technology, 1997, 31(8): 2399-2406.
    [22]
    CARMEM L P S, ZANTA, FRIEDRICH L C, MACHULEK A, et al. Surfactant degradation by a catechol-driven Fenton reaction[J]. Journal of Hazardous Materials, 2010, 178: 258-263. doi: 10.1016/j.jhazmat.2010.01.071
    [23]
    GULSHAN F, YANAGIDA S, KAMESHIMA Y, et al. Various factors affecting photodecomposition of methylene blue by iron-oxides in an oxalate solution[J]. Water Research, 2010, 44(9): 2876-2884. doi: 10.1016/j.watres.2010.01.040
    [24]
    LU M C, CHEN J N, HUANG H H. Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide[J]. Chemosphere, 2002, 46(1): 131-136. doi: 10.1016/S0045-6535(01)00076-5
    [25]
    SUN Y, DANISH M, ALI M, et al. Trichloroethene degradation by nanoscale CaO2 activated with Fe(Ⅱ)/FeS: the role of FeS and the synergistic activation mechanism of Fe(Ⅱ)/FeS[J]. Chemical Engineering Journal, 2020, 394: 124830/1-9. doi: 10.1016/j.cej.2020.124830
    [26]
    NAKAGAWA H, YAMAGUCHI E. Influence of oxalic acid formed on the degradation of phenol by Fenton reagent[J]. Chemosphere, 2012, 88(2): 183-187. doi: 10.1016/j.chemosphere.2012.02.082
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return