• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
HE Jiahong, WU Honghai, LU Pengcheng. The Photo-Fenton Catalytic Property of the Sulfur-Doped Hematite over Montmorillonite Composite and Its Enhancement[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 42-49. DOI: 10.6054/j.jscnun.2021007
Citation: HE Jiahong, WU Honghai, LU Pengcheng. The Photo-Fenton Catalytic Property of the Sulfur-Doped Hematite over Montmorillonite Composite and Its Enhancement[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 42-49. DOI: 10.6054/j.jscnun.2021007

The Photo-Fenton Catalytic Property of the Sulfur-Doped Hematite over Montmorillonite Composite and Its Enhancement

More Information
  • Received Date: March 25, 2020
  • Available Online: March 23, 2021
  • A novel heterogeneous Fenton-catalyst (named S-α-Fe2O3/Mnt) was successfully synthesized by doping sulfur into hematite loaded over montmorillonite. The methods of XRD, XPS, EPR and capture test were used to characterize the catalyst for determination of its Fenton catalytic performance and the mechanism of its enhancement. S-α-Fe2O3/Mnt had an efficient photo-Fenton catalytic performance with phenol used as a model pollutant in a wide pH range. When pH was 3.0, the Fenton reaction was extremely rapid and 50 mg/L phenol could be 100% degraded in 10 min. When pH was 5.0, the phenol degradation rate was somewhat decreased, but 50 mg/L phenol could be still completely degraded within 60 min. The research results demonstrated that the sulfur doping had made the sulfur ions enter the structure of the α-Fe2O3 fraction in S-α-Fe2O3/Mnt and this led to a large number of oxygen vacancies formed in the catalyst, which could enhance its photocatalytic performance; on the other hand, the surface acidic sites of montmorillonite could widen the effective pH range of the novel catalyst. Therefore, S-α-Fe2O3/Mnt can be a promising heterogeneous Fenton-catalyst for the application in environmental remediation.
  • [1]
    GARRIDO-RAMÍREZ E G, THENG B K G, MORA M L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions: a review[J]. Applied Clay Science, 2010, 47(3/4): 182-192. http://www.cabdirect.org/abstracts/20103084568.html
    [2]
    HE D, CHEN Y, SITU Y, et al. Synthesis of ternary g-C3N4/Ag/γ-FeOOH photocatalyst: an integrated heterogeneous Fenton-like system for effectively degradation of azo dye methyl orange under visible light[J]. Applied Surface Science, 2017, 425: 862-872. doi: 10.1016/j.apsusc.2017.06.124
    [3]
    ZHU Y, ZHU R, YAN L, et al. Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-Fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite[J]. Applied Catalysis B: Environmental, 2018, 239: 280-289. doi: 10.1016/j.apcatb.2018.08.025
    [4]
    WANG Y, WANG Y, CAO J, et al. Low-temperature H2S sensors based on Ag-doped α-Fe2O3 nanoparticles[J]. Sensors and Actuators B: Chemical, 2008, 131(1): 183-189. doi: 10.1016/j.snb.2007.11.002
    [5]
    GUO L, CHEN F, FAN X, et al. S-doped α-Fe2O3 as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 and phenol[J]. Applied Catalysis B: Environmental, 2010, 96(1/2): 162-168. http://www.sciencedirect.com/science/article/pii/S0926337310000718
    [6]
    SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. doi: 10.1107/S0567739476001551
    [7]
    BUTLER V, CATLOW C, FENDER B, et al. Dopant ion radius and ionic conductivity in cerium dioxide[J]. Solid State Ionics, 1983, 8(2): 109-113. doi: 10.1016/0167-2738(83)90070-X
    [8]
    YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8): 2441-2449. doi: 10.1016/j.apsusc.2007.09.063
    [9]
    LICHTMAN D, CRAIG J H, SAILER V, et al. AES and XPS spectra of sulfur in sulfur compounds[J]. Applications of Surface Science, 1981, 7(4): 325-331. doi: 10.1016/0378-5963(81)90080-5
    [10]
    ZHUANG L, GE L, YANG Y, et al. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction[J]. Advanced Materials, 2017, 29(17): 1-7. http://www.researchgate.net/publication/345920100_CommuniCation_Ultrathin_Iron-Cobalt_Oxide_Nanosheets_with_Abundant_Oxygen_Vacancies_for_the_Oxygen_Evolution_Reaction
    [11]
    TANG J, ZOU Z, YE J. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation[J]. Angewandte Chemie International Edition in English, 2004, 43(34): 4463-4466. doi: 10.1002/anie.200353594
    [12]
    LI X Z, LI F B, YANG C L, et al. Photocatalytic activity of WOx-TiO2 under visible light irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 141(2/3): 209-217. http://www.sciencedirect.com/science/article/pii/S1010603001004464
    [13]
    FUJIHARA K, IZUMI S, OHNO T, et al. Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 132(1/2): 99-104. http://www.sciencedirect.com/science/article/pii/S1010603000002045
    [14]
    ZHU Y, ZHU R, XI Y, et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review[J]. Applied Catalysis B: Environmental, 2019, 255: 1-16. http://www.sciencedirect.com/science/article/pii/S0926337319304783
    [15]
    SUN Z, HE X, DU J, et al. Synergistic effect of photocata-lysis and adsorption of nano-TiO2 self-assembled onto sulfanyl/activated carbon composite[J]. Environmental Science and Pollution Research, 2016, 23(21): 21733-21740. doi: 10.1007/s11356-016-7364-z
    [16]
    JIN H, TIAN X, NIE Y, et al. Oxygen vacancy promoted heterogeneous Fenton-like degradation of Ofloxacin at pH 3.2-9.0 by Cu substituted Magnetic Fe3 O4 @ FeOOH nanocomposite[J]. Environmental Science & Technology, 2017, 51(21): 12699-12706. http://www.ncbi.nlm.nih.gov/pubmed/28934546
    [17]
    LI H, SHANG J, YANG Z, et al. Oxygen vacancy associated surface Fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity[J]. Environmental Science & Technology, 2017, 51(10): 5685-5694.
    [18]
    XIA Q, YAO Z, ZHANG D, et al. Rational synthesis of micronano dendritic ZVI@Fe3 O4 modified with carbon quantum dots and oxygen vacancies for accelerating Fenton-like oxidation[J]. Science of the Total Environment, 2019, 671: 1056-1065. doi: 10.1016/j.scitotenv.2019.03.435
    [19]
    KIM Y, KANG S. Calculation of formation energy of oxygen vacancy in ZnO based on photoluminescence measurements[J]. Journal of Physical Chemistry B, 2010, 114(23): 7874-7878. doi: 10.1021/jp100086v
    [20]
    MARSHALL C E. Layer lattices and the base-exchange clays[J]. Zeitschrift für Kristallographie-Crystalline Materials, 1935, 91: 433-449. http://www.degruyter.com/downloadpdf/j/zkri.1935.91.issue-1-6/zkri.1935.91.1.433/zkri.1935.91.1.433.xml
    [21]
    WEI X, WU H, HE G, et al. Efficient degradation of phenol using iron-montmorillonite as a Fenton catalyst: importance of visible light irradiation and intermediates[J]. Journal of Hazardous Materials, 2017, 321: 408-416. doi: 10.1016/j.jhazmat.2016.09.031
    [22]
    WANG Y, LIANG M, FANG J, et al. Visible-light photo-Fenton oxidation of phenol with rGO-alpha-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: performance and optimization of the catalyst[J]. Chemosphere, 2017, 182: 468-476. doi: 10.1016/j.chemosphere.2017.05.037
    [23]
    PRADHAN G K, PADHI D K, PARIDA K M. Fabrication of alpha-Fe2 O3 nanorod/rGO composite: a novel hybrid photocatalyst for phenol degradation [J]. ACS Applied Materials & Interfaces, 2013, 5(18): 9101-9110. http://europepmc.org/abstract/med/23962068
    [24]
    WEI X, WU H, SUN F. Magnetite/Fe-Al-montmorillonite as a Fenton catalyst with efficient degradation of phenol[J]. Journal of Colloid and Interface Science, 2017, 504: 611-619. doi: 10.1016/j.jcis.2017.05.110
    [25]
    MINELLA M, MARCHETTI G, DE LAURENTIIS E, et al. Photo-Fenton oxidation of phenol with magnetite as iron source[J]. Applied Catalysis B: Environmental, 2014, 154: 102-109. http://www.sciencedirect.com/science/article/pii/S0926337314000976
    [26]
    ILMAS E R, SAVIKHINA T I. Investigation of luminescence excitation processes in some oxygen-dominated compounds by 3 to 21 eV photons[J]. Journal of Luminescence, 1970, 2: 702-715. http://www.sciencedirect.com/science/article/pii/0022231370900839
  • Related Articles

    [1]MENG Zhan, BAI Heng, ZHAO Lei. Phase Equilibrium of CO2-Hydrocarbon Mixture in Confined Space with Extended PT Equation of State[J]. Journal of South China Normal University (Natural Science Edition), 2025, 57(1): 43-50. DOI: 10.6054/j.jscnun.2025005
    [2]HE Guannan, HUANG Bo. Preparation of ZnO Light Trapping Materials and their Performance in Solar Cells[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(4): 1-6. DOI: 10.6054/j.jscnun.2019056
    [3]Degradation of Rhodamine B by Carbon Nitride Activated Sodium Persulfate under Visible Light Irradiation[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(3): 44-48.
    [4]Research Progress on Light Extraction Technology of LED[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(5): 1-7. DOI: 10.6054/j.jscnun.2016.08.001
    [5]Sheng Qian, Xue Jianming*. The Research Progress of Room Temperature Ionic Liquids in Confined Geometries[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(2): 27-31. DOI: 10.6054/j.jscnun.2014.12.014
    [6]Theoretical Study of Light (Electrostatics) Driven Molecular Switching Processes[J]. Journal of South China Normal University (Natural Science Edition), 2014, 46(6): 139-139.
    [7]Microemulsion Synthesis Of Nanosized Bismuth Oxyiodide-Titanium Dioxide Composite Particles And Photodegradation Of Bisphenol A Under Visible Light Irradiation[J]. Journal of South China Normal University (Natural Science Edition), 2013, 45(1). DOI: 10.6054/j.jscnun.2012.12.013
    [8]Kan Xue-min. photon mass and dispersion of the velocity of light in vacuum[J]. Journal of South China Normal University (Natural Science Edition), 2012, 44(3). DOI: 10.6054/j.jscnun.2012.06.016
    [9]THE FORMATION OF CHARGE-TRANSFER-COMPLEX OF ORGANICS/TIO2 AND THEIR EFFECTS ON PHOTOCATALYTIC REDUCTION OF CR6+ UNDER VISIBLE LIGHT IRRADIATION[J]. Journal of South China Normal University (Natural Science Edition), 2012, 44(2).
    [10]EXPERIMENTAL RESEARCH OF PHASE-SHIFTING DIGITAL HOLOGRAPHY BASED ON SPATIAL LIGHT MODULATOR[J]. Journal of South China Normal University (Natural Science Edition), 2009, 1(2): 44-47 .
  • Cited by

    Periodical cited type(2)

    1. 管钰晴,唐冬梅,傅云霞,孙佳媛,韩志国,张波,孔明,曹程明,雷李华. 穆勒椭偏标定方法中LM算法研究. 红外与激光工程. 2020(08): 168-176 .
    2. 汪娟,冀丽娜,白芸,黄佐华. 单波长椭偏法测量各向异性晶体光学参数的研究. 激光与光电子学进展. 2020(15): 224-232 .

    Other cited types(2)

Catalog

    Article views (544) PDF downloads (75) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return