Citation: | HE Jiahong, WU Honghai, LU Pengcheng. The Photo-Fenton Catalytic Property of the Sulfur-Doped Hematite over Montmorillonite Composite and Its Enhancement[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 42-49. DOI: 10.6054/j.jscnun.2021007 |
[1] |
GARRIDO-RAMÍREZ E G, THENG B K G, MORA M L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions: a review[J]. Applied Clay Science, 2010, 47(3/4): 182-192. http://www.cabdirect.org/abstracts/20103084568.html
|
[2] |
HE D, CHEN Y, SITU Y, et al. Synthesis of ternary g-C3N4/Ag/γ-FeOOH photocatalyst: an integrated heterogeneous Fenton-like system for effectively degradation of azo dye methyl orange under visible light[J]. Applied Surface Science, 2017, 425: 862-872. doi: 10.1016/j.apsusc.2017.06.124
|
[3] |
ZHU Y, ZHU R, YAN L, et al. Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-Fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite[J]. Applied Catalysis B: Environmental, 2018, 239: 280-289. doi: 10.1016/j.apcatb.2018.08.025
|
[4] |
WANG Y, WANG Y, CAO J, et al. Low-temperature H2S sensors based on Ag-doped α-Fe2O3 nanoparticles[J]. Sensors and Actuators B: Chemical, 2008, 131(1): 183-189. doi: 10.1016/j.snb.2007.11.002
|
[5] |
GUO L, CHEN F, FAN X, et al. S-doped α-Fe2O3 as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 and phenol[J]. Applied Catalysis B: Environmental, 2010, 96(1/2): 162-168. http://www.sciencedirect.com/science/article/pii/S0926337310000718
|
[6] |
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. doi: 10.1107/S0567739476001551
|
[7] |
BUTLER V, CATLOW C, FENDER B, et al. Dopant ion radius and ionic conductivity in cerium dioxide[J]. Solid State Ionics, 1983, 8(2): 109-113. doi: 10.1016/0167-2738(83)90070-X
|
[8] |
YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8): 2441-2449. doi: 10.1016/j.apsusc.2007.09.063
|
[9] |
LICHTMAN D, CRAIG J H, SAILER V, et al. AES and XPS spectra of sulfur in sulfur compounds[J]. Applications of Surface Science, 1981, 7(4): 325-331. doi: 10.1016/0378-5963(81)90080-5
|
[10] |
ZHUANG L, GE L, YANG Y, et al. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction[J]. Advanced Materials, 2017, 29(17): 1-7. http://www.researchgate.net/publication/345920100_CommuniCation_Ultrathin_Iron-Cobalt_Oxide_Nanosheets_with_Abundant_Oxygen_Vacancies_for_the_Oxygen_Evolution_Reaction
|
[11] |
TANG J, ZOU Z, YE J. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation[J]. Angewandte Chemie International Edition in English, 2004, 43(34): 4463-4466. doi: 10.1002/anie.200353594
|
[12] |
LI X Z, LI F B, YANG C L, et al. Photocatalytic activity of WOx-TiO2 under visible light irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 141(2/3): 209-217. http://www.sciencedirect.com/science/article/pii/S1010603001004464
|
[13] |
FUJIHARA K, IZUMI S, OHNO T, et al. Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 132(1/2): 99-104. http://www.sciencedirect.com/science/article/pii/S1010603000002045
|
[14] |
ZHU Y, ZHU R, XI Y, et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review[J]. Applied Catalysis B: Environmental, 2019, 255: 1-16. http://www.sciencedirect.com/science/article/pii/S0926337319304783
|
[15] |
SUN Z, HE X, DU J, et al. Synergistic effect of photocata-lysis and adsorption of nano-TiO2 self-assembled onto sulfanyl/activated carbon composite[J]. Environmental Science and Pollution Research, 2016, 23(21): 21733-21740. doi: 10.1007/s11356-016-7364-z
|
[16] |
JIN H, TIAN X, NIE Y, et al. Oxygen vacancy promoted heterogeneous Fenton-like degradation of Ofloxacin at pH 3.2-9.0 by Cu substituted Magnetic Fe3 O4 @ FeOOH nanocomposite[J]. Environmental Science & Technology, 2017, 51(21): 12699-12706. http://www.ncbi.nlm.nih.gov/pubmed/28934546
|
[17] |
LI H, SHANG J, YANG Z, et al. Oxygen vacancy associated surface Fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity[J]. Environmental Science & Technology, 2017, 51(10): 5685-5694.
|
[18] |
XIA Q, YAO Z, ZHANG D, et al. Rational synthesis of micronano dendritic ZVI@Fe3 O4 modified with carbon quantum dots and oxygen vacancies for accelerating Fenton-like oxidation[J]. Science of the Total Environment, 2019, 671: 1056-1065. doi: 10.1016/j.scitotenv.2019.03.435
|
[19] |
KIM Y, KANG S. Calculation of formation energy of oxygen vacancy in ZnO based on photoluminescence measurements[J]. Journal of Physical Chemistry B, 2010, 114(23): 7874-7878. doi: 10.1021/jp100086v
|
[20] |
MARSHALL C E. Layer lattices and the base-exchange clays[J]. Zeitschrift für Kristallographie-Crystalline Materials, 1935, 91: 433-449. http://www.degruyter.com/downloadpdf/j/zkri.1935.91.issue-1-6/zkri.1935.91.1.433/zkri.1935.91.1.433.xml
|
[21] |
WEI X, WU H, HE G, et al. Efficient degradation of phenol using iron-montmorillonite as a Fenton catalyst: importance of visible light irradiation and intermediates[J]. Journal of Hazardous Materials, 2017, 321: 408-416. doi: 10.1016/j.jhazmat.2016.09.031
|
[22] |
WANG Y, LIANG M, FANG J, et al. Visible-light photo-Fenton oxidation of phenol with rGO-alpha-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: performance and optimization of the catalyst[J]. Chemosphere, 2017, 182: 468-476. doi: 10.1016/j.chemosphere.2017.05.037
|
[23] |
PRADHAN G K, PADHI D K, PARIDA K M. Fabrication of alpha-Fe2 O3 nanorod/rGO composite: a novel hybrid photocatalyst for phenol degradation [J]. ACS Applied Materials & Interfaces, 2013, 5(18): 9101-9110. http://europepmc.org/abstract/med/23962068
|
[24] |
WEI X, WU H, SUN F. Magnetite/Fe-Al-montmorillonite as a Fenton catalyst with efficient degradation of phenol[J]. Journal of Colloid and Interface Science, 2017, 504: 611-619. doi: 10.1016/j.jcis.2017.05.110
|
[25] |
MINELLA M, MARCHETTI G, DE LAURENTIIS E, et al. Photo-Fenton oxidation of phenol with magnetite as iron source[J]. Applied Catalysis B: Environmental, 2014, 154: 102-109. http://www.sciencedirect.com/science/article/pii/S0926337314000976
|
[26] |
ILMAS E R, SAVIKHINA T I. Investigation of luminescence excitation processes in some oxygen-dominated compounds by 3 to 21 eV photons[J]. Journal of Luminescence, 1970, 2: 702-715. http://www.sciencedirect.com/science/article/pii/0022231370900839
|
1. |
管钰晴,唐冬梅,傅云霞,孙佳媛,韩志国,张波,孔明,曹程明,雷李华. 穆勒椭偏标定方法中LM算法研究. 红外与激光工程. 2020(08): 168-176 .
![]() | |
2. |
汪娟,冀丽娜,白芸,黄佐华. 单波长椭偏法测量各向异性晶体光学参数的研究. 激光与光电子学进展. 2020(15): 224-232 .
![]() |