• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WANG Yuan, YANG Ru, MIAO Jianlin, ZHAO Ruirui. One-Step Recycling of Trinary Cathode Materials in Lithium Ion Batteries and the Impact on Their Performance[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 36-41. DOI: 10.6054/j.jscnun.2021006
Citation: WANG Yuan, YANG Ru, MIAO Jianlin, ZHAO Ruirui. One-Step Recycling of Trinary Cathode Materials in Lithium Ion Batteries and the Impact on Their Performance[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 36-41. DOI: 10.6054/j.jscnun.2021006

One-Step Recycling of Trinary Cathode Materials in Lithium Ion Batteries and the Impact on Their Performance

More Information
  • Received Date: March 25, 2020
  • Available Online: March 23, 2021
  • A direct one-step recycling process was developed to recycle the trinary materials from the spent lithium ion batteries. The spent materials were collected after battery disassembling, electrode separation and pyrolysis and subjected to acid leaching. The element concentration in the obtained solution from the leaching process was determined with elemental analysis, and proper Ni, Co and Mn sources were added into the solution, achieving a ratio of n(Ni)∶n(Co)∶n(Mn)=5∶2∶3. The adjusted solution was directly used to co-precipitated with sodium oxalate and the obtained oxalate precipitates were mixed with Li sources. The trinary materials were obtained after sintering. The results exhibited that the recycled materials with this method could release a discharge capacity of 162 mAh/g and had a capacity retention ratio of 88% after 100 cycles. However, high-content impurity would affect the material performance, resulting in inferior electrochemical properties. This novel method can avoid the resource waste and energy loss in the traditional recycling process, whereby every metal is separated. The obtained materials through this process have higher additional value, promising an attractive commercial prospect.
  • [1]
    王刚, 赵光金, 吴文龙, 等. 动力锂电池梯次利用与回收处理[M]. 北京: 中国电力出版社, 2015.
    [2]
    余海军, 谢英豪, 张铜柱. 车用动力电池回收技术进展[J]. 中国有色金属学报, 2014, 24(2): 448-460. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201402021.htm

    YU H J, XIE Y H, ZHANG T Z. Technical progress on power batteries recovery for electric vehicle[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(2): 448-460. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201402021.htm
    [3]
    辛宝平, 朱庆荣, 李丽. 生物淋滤溶出废旧锂离子电池中钴的研究[J]. 北京理工大学学报, 2007, 27(6): 551-555. doi: 10.3969/j.issn.1001-0645.2007.06.018

    XIN B P, ZHU Q R, LI L, et al. Study on the release of Co from retrieved Li-ion batteries by bioleaching[J]. Transactions of Beijing Institute of Technology, 2007, 27(6): 551-555. doi: 10.3969/j.issn.1001-0645.2007.06.018
    [4]
    ZOU H Y, GRATZ E, APELIAN D, et al. A novel method to recycle mixed cathode materials for lithium ion batteries[J]. Green Chemistry, 2013, 15: 1183-1191. doi: 10.1039/c3gc40182k
    [5]
    KIM D S, SOHN J S, LEE C K. Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries[J]. Hydrometallurgy, 2003, 68: 5-10. doi: 10.1016/S0304-386X(02)00167-6
    [6]
    NAN J, HAN D, ZUO X. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction[J]. Journal of Power Sources, 2005, 152: 278-284. doi: 10.1016/j.jpowsour.2005.03.134
    [7]
    缪建麟, 常毅, 蔡俊超, 等. 直接回收锰酸锂制备超级电容器MnS材料的研究[J]. 华南师范大学学报(自然科学版), 2019, 51(2): 45-49. doi: 10.6054/j.jscnun.2019023

    MIAO J L, CHANG Y, CAI J C, et al. Recycling of LiMn2O4 scraps from lithium ion battery and its reuse in supercapacitor field[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(2): 45-49. doi: 10.6054/j.jscnun.2019023
    [8]
    YANG H P, WU H H, GE M Y, et al. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries[J]. Advanced Functional Material, 2019, 29(13): 1808825/1-13. doi: 10.1002/adfm.201808825
    [9]
    朱显峰, 赵瑞瑞, 常毅, 等. 废旧锂离子电池三元正极材料酸浸研究[J]. 电池, 2017, 47(2): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201702014.htm

    ZHU X F, ZHAO R R, CHANG Y, et al. Study on the acid leaching of ternary anode materials in spent Li-ion battery[J]. Battery Bimonthly, 2017, 47(2): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201702014.htm
    [10]
    ZHAO R R, MIAO J L, LAN W J, et al. Synthesis of layered materials by ultrasonic/microwave-assisted coprecipitation method: a case study of LiNi0.5Co0.2Mn0.3O2[J]. Sustainable Materials and Technologies, 2018, 17: e00083/1-9. http://www.researchgate.net/publication/328854119_Synthesis_of_layered_materials_by_ultrasonicmicrowave-assisted_coprecipitation_method_A_case_study_of_LiNi05Co02Mn03O2
    [11]
    赵瑞瑞, 梁家星, 杨子莲, 等. 超声微波辅助共沉淀法制备Li1.2Ni0.2Mn0.6O2正极材料及其性能[J]. 华南师范大学学报(自然科学版), 2017, 49(2): 6-10. doi: 10.6054/j.jscnun.2017104

    ZHAO R R, LIANG J X, YANG Z L, et al. Synthesis and Investigation of the nanocrystalline Li1.2Ni0.2Mn0.6O2 cathodes for Li-ion batteries by using ultrasonic/microwave-assisted co-precipitation method with different ultrasonic time[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(2): 6-10. doi: 10.6054/j.jscnun.2017104
    [12]
    REN L, WANG P P, HAN Y S, et al. Synthesis of CoC2O4·2H2O nanorods and their thermal decomposition to Co3O4 nanoparticles[J]. Chemical Physics Letters, 2009, 476: 78-83. doi: 10.1016/j.cplett.2009.06.015
    [13]
    KIM J H, PARK K J, KIM S J, et al. A method of increasing the energy density of layered Ni-rich Li[Ni1-2xCoxMnx]O2 cathodes (x=0.05, 0.1, 0.2)[J]. Journal of Material Chemistry A, 2019, 7: 2694-2701. http://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta10438g
    [14]
    LI H Y, LIU A, ZHANG N, et al. An unavoidable challenge for Ni-rich positive electrode materials for lithium-ion batteries[J]. Chemistry of Materials, 2019, 31: 7574-7584. doi: 10.1021/acs.chemmater.9b02372
    [15]
    GUILMARD M, ROUGIER A, GRUNE M, et al. Effects of aluminum on the structural and electrochemical properties of LiNiO2[J]. Journal of Power Sources, 2003, 115: 305-314. doi: 10.1016/S0378-7753(03)00012-0
    [16]
    WENG Y Q, XU S M, JIANG C Y. Synthesis and performances of Li[(Ni1/3Co1/3Mn1/3)1-xMgx]O2 prepared from spent lithium ion batteries[J]. Journal of Hazardous Materials, 2013, 246: 163-172. http://europepmc.org/abstract/med/23298741
    [17]
    LI J, CAMERON A, LI H Y, et al. Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells[J]. Journal of The Electrochemical Society, 2017, 164(7): A1534-A1544. doi: 10.1149/2.0991707jes
    [18]
    MCCALLA E, ROWE A, SHUNMUGASUNDARAM R, et al. Structural study of the Li-Mn-Ni oxide pseudoternary system of interest for positive electrodes of Li-ion batteries[J]. Chemistry of Materials, 2013, 25: 989-999. doi: 10.1021/cm4001619
  • Cited by

    Periodical cited type(2)

    1. 凌伟军. 废旧三元锂离子电池回收技术研究新进展. 山西化工. 2023(02): 38-40 .
    2. 张继予,蒋梦迪,谢宏泽,吴文荣,唐庆杰. 三元锂电池正极材料的回收利用. 化工技术与开发. 2022(07): 73-76 .

    Other cited types(3)

Catalog

    Article views (531) PDF downloads (81) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return