Citation: | WANG Yuan, YANG Ru, MIAO Jianlin, ZHAO Ruirui. One-Step Recycling of Trinary Cathode Materials in Lithium Ion Batteries and the Impact on Their Performance[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 36-41. DOI: 10.6054/j.jscnun.2021006 |
[1] |
王刚, 赵光金, 吴文龙, 等. 动力锂电池梯次利用与回收处理[M]. 北京: 中国电力出版社, 2015.
|
[2] |
余海军, 谢英豪, 张铜柱. 车用动力电池回收技术进展[J]. 中国有色金属学报, 2014, 24(2): 448-460. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201402021.htm
YU H J, XIE Y H, ZHANG T Z. Technical progress on power batteries recovery for electric vehicle[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(2): 448-460. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201402021.htm
|
[3] |
辛宝平, 朱庆荣, 李丽. 生物淋滤溶出废旧锂离子电池中钴的研究[J]. 北京理工大学学报, 2007, 27(6): 551-555. doi: 10.3969/j.issn.1001-0645.2007.06.018
XIN B P, ZHU Q R, LI L, et al. Study on the release of Co from retrieved Li-ion batteries by bioleaching[J]. Transactions of Beijing Institute of Technology, 2007, 27(6): 551-555. doi: 10.3969/j.issn.1001-0645.2007.06.018
|
[4] |
ZOU H Y, GRATZ E, APELIAN D, et al. A novel method to recycle mixed cathode materials for lithium ion batteries[J]. Green Chemistry, 2013, 15: 1183-1191. doi: 10.1039/c3gc40182k
|
[5] |
KIM D S, SOHN J S, LEE C K. Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries[J]. Hydrometallurgy, 2003, 68: 5-10. doi: 10.1016/S0304-386X(02)00167-6
|
[6] |
NAN J, HAN D, ZUO X. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction[J]. Journal of Power Sources, 2005, 152: 278-284. doi: 10.1016/j.jpowsour.2005.03.134
|
[7] |
缪建麟, 常毅, 蔡俊超, 等. 直接回收锰酸锂制备超级电容器MnS材料的研究[J]. 华南师范大学学报(自然科学版), 2019, 51(2): 45-49. doi: 10.6054/j.jscnun.2019023
MIAO J L, CHANG Y, CAI J C, et al. Recycling of LiMn2O4 scraps from lithium ion battery and its reuse in supercapacitor field[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(2): 45-49. doi: 10.6054/j.jscnun.2019023
|
[8] |
YANG H P, WU H H, GE M Y, et al. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries[J]. Advanced Functional Material, 2019, 29(13): 1808825/1-13. doi: 10.1002/adfm.201808825
|
[9] |
朱显峰, 赵瑞瑞, 常毅, 等. 废旧锂离子电池三元正极材料酸浸研究[J]. 电池, 2017, 47(2): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201702014.htm
ZHU X F, ZHAO R R, CHANG Y, et al. Study on the acid leaching of ternary anode materials in spent Li-ion battery[J]. Battery Bimonthly, 2017, 47(2): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201702014.htm
|
[10] |
ZHAO R R, MIAO J L, LAN W J, et al. Synthesis of layered materials by ultrasonic/microwave-assisted coprecipitation method: a case study of LiNi0.5Co0.2Mn0.3O2[J]. Sustainable Materials and Technologies, 2018, 17: e00083/1-9. http://www.researchgate.net/publication/328854119_Synthesis_of_layered_materials_by_ultrasonicmicrowave-assisted_coprecipitation_method_A_case_study_of_LiNi05Co02Mn03O2
|
[11] |
赵瑞瑞, 梁家星, 杨子莲, 等. 超声微波辅助共沉淀法制备Li1.2Ni0.2Mn0.6O2正极材料及其性能[J]. 华南师范大学学报(自然科学版), 2017, 49(2): 6-10. doi: 10.6054/j.jscnun.2017104
ZHAO R R, LIANG J X, YANG Z L, et al. Synthesis and Investigation of the nanocrystalline Li1.2Ni0.2Mn0.6O2 cathodes for Li-ion batteries by using ultrasonic/microwave-assisted co-precipitation method with different ultrasonic time[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(2): 6-10. doi: 10.6054/j.jscnun.2017104
|
[12] |
REN L, WANG P P, HAN Y S, et al. Synthesis of CoC2O4·2H2O nanorods and their thermal decomposition to Co3O4 nanoparticles[J]. Chemical Physics Letters, 2009, 476: 78-83. doi: 10.1016/j.cplett.2009.06.015
|
[13] |
KIM J H, PARK K J, KIM S J, et al. A method of increasing the energy density of layered Ni-rich Li[Ni1-2xCoxMnx]O2 cathodes (x=0.05, 0.1, 0.2)[J]. Journal of Material Chemistry A, 2019, 7: 2694-2701. http://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta10438g
|
[14] |
LI H Y, LIU A, ZHANG N, et al. An unavoidable challenge for Ni-rich positive electrode materials for lithium-ion batteries[J]. Chemistry of Materials, 2019, 31: 7574-7584. doi: 10.1021/acs.chemmater.9b02372
|
[15] |
GUILMARD M, ROUGIER A, GRUNE M, et al. Effects of aluminum on the structural and electrochemical properties of LiNiO2[J]. Journal of Power Sources, 2003, 115: 305-314. doi: 10.1016/S0378-7753(03)00012-0
|
[16] |
WENG Y Q, XU S M, JIANG C Y. Synthesis and performances of Li[(Ni1/3Co1/3Mn1/3)1-xMgx]O2 prepared from spent lithium ion batteries[J]. Journal of Hazardous Materials, 2013, 246: 163-172. http://europepmc.org/abstract/med/23298741
|
[17] |
LI J, CAMERON A, LI H Y, et al. Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells[J]. Journal of The Electrochemical Society, 2017, 164(7): A1534-A1544. doi: 10.1149/2.0991707jes
|
[18] |
MCCALLA E, ROWE A, SHUNMUGASUNDARAM R, et al. Structural study of the Li-Mn-Ni oxide pseudoternary system of interest for positive electrodes of Li-ion batteries[J]. Chemistry of Materials, 2013, 25: 989-999. doi: 10.1021/cm4001619
|
1. |
凌伟军. 废旧三元锂离子电池回收技术研究新进展. 山西化工. 2023(02): 38-40 .
![]() | |
2. |
张继予,蒋梦迪,谢宏泽,吴文荣,唐庆杰. 三元锂电池正极材料的回收利用. 化工技术与开发. 2022(07): 73-76 .
![]() |