Citation: | LIU Yuting, XU Chao, GU Fenglong. A Theoretical Study of the Enhancement of NO2 Sensing and Adsoption on Indium-Doped SnO2(110) Surface[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 16-22. DOI: 10.6054/j.jscnun.2021003 |
[1] |
HUANG B, ZHAO F, FISHMAN T, et al. Building material use and associated environmental impacts in China 2000—2015[J]. Environmental Science & Technology, 2018, 52(23): 14006-14014. http://www.researchgate.net/publication/328840830_Building_Material_Use_and_Associated_Environmental_Impacts_in_China_2000-2015
|
[2] |
ANDRINGA A M, PILIEGO C, KATSOURAS I, et al. NO2 detection and real-time sensing with field-effect transistors[J]. Chemistry of Materials, 2014, 26(1): 773-785. doi: 10.1021/cm4020628
|
[3] |
ZHANG D, LIU Z, LI C, et al. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices[J]. Nano Letters, 2004, 4(10): 1919-1924. doi: 10.1021/nl0489283
|
[4] |
HESTERBERG T W, BUNN W B, MCCLELLAN R O, et al. Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: evidence for NO2 no-effect levels[J]. Critical Reviews in Toxicology, 2009, 39(9): 743-781. doi: 10.3109/10408440903294945
|
[5] |
BOOK S A. Scaling toxicity from laboratory animals to people: an example with nitrogen dioxide[J]. Journal of Toxicology & Environmental Health, 1982, 9(5/6): 719-725. http://www.ncbi.nlm.nih.gov/pubmed/7120506
|
[6] |
姜如青, 欧阳剑, 杨辉, 等. In、Ga掺杂SnO2的第一性原理研究[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 1-6. http://journal-n.scnu.edu.cn/article/id/3815
JIANG R Q, OUYANG J, YANG H, et al. First-principles investigations of the electronic structures and optical properties of SnO2 with In and Ga defects[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(3): 1-6. http://journal-n.scnu.edu.cn/article/id/3815
|
[7] |
SHARMA A, TOMAR M, GUPTA V. SnO2 thin film sensor with enhanced response for NO2 gas at lower temperatures[J]. Sensors and Actuators B: Chemical, 2011, 156(2): 743-752. doi: 10.1016/j.snb.2011.02.033
|
[8] |
ZHU X, GUO Y, REN H, et al. Enhancing the NO2 gas sensing properties of rGO/SnO2 nanocomposite films by using microporous substrates[J]. Sensors and Actuators B: Chemical, 2017, 248: 560-570. doi: 10.1016/j.snb.2017.04.030
|
[9] |
WANG T, HAO J, ZHENG S, et al. Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites[J]. Nano Research, 2018, 11(2): 791-803. doi: 10.1007/s12274-017-1688-y
|
[10] |
GAO L, CHENG Z, XIANG Q, et al. Porous corundum-type In2O3 nanosheets: synthesis and NO2 sensing properties[J]. Sensors and Actuators B: Chemical, 2015, 208: 436-443. doi: 10.1016/j.snb.2014.11.053
|
[11] |
CHOU P C, CHEN H I, LIU I P, et al. Nitrogen oxide (NO2) gas sensing performance of ZnO nanoparticles (NPs)/sapphire-based sensors[J]. IEEE Sensors Journal, 2015, 15(7): 3759-3763. doi: 10.1109/JSEN.2015.2391271
|
[12] |
WEI W, DAI Y, HUANG B. Role of Cu doping in SnO2 sensing properties toward H2S[J]. The Journal of Physical Chemistry C, 2011, 115(38): 18597-18602. doi: 10.1021/jp204170j
|
[13] |
LI S, LU Z, YANG Z, et al. The sensing mechanism of Pt-doped SnO2 surface toward CO: a first-principle study[J]. Sensors and Actuators B: Chemical, 2014, 202: 83-92. doi: 10.1016/j.snb.2014.05.071
|
[14] |
WANG P, HUI J, YUAN T, et al. Ultrafine nanoparticles of W-doped SnO2 for durable H2S sensors with fast response and recovery[J]. RSC Advances, 2019, 9(20): 11046-11053. doi: 10.1039/C9RA00944B
|
[15] |
KIM H J, LEE J H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview[J]. Sensors and Actuators B: Chemical, 2014, 192: 607-627. doi: 10.1016/j.snb.2013.11.005
|
[16] |
WANG Z, ZHANG Y, LIU S, et al. Preparation of Ag nanoparticles-SnO2 nanoparticles-reduced graphene oxide hybrids and their application for detection of NO2 at room temperature[J]. Sensors and Actuators B: Chemical, 2016, 222: 893-903. doi: 10.1016/j.snb.2015.09.027
|
[17] |
MCCUE J T, YING J Y. SnO2-In2O3 nanocomposites as semiconductor gas sensors for CO and NOx detection[J]. Chemistry of Materials, 2007, 19(5): 1009-1015. doi: 10.1021/cm0617283
|
[18] |
KAUR J, KUMAR R, BHATNAGAR M C. Effect of indium-doped SnO2 nanoparticles on NO2 gas sensing properties[J]. Sensors and Actuators B: Chemical, 2007, 126(2): 478-484. doi: 10.1016/j.snb.2007.03.033
|
[19] |
CUI S, WEN Z, MATTSON E C, et al. Indium-doped SnO2 nanoparticle-graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2[J]. Journal of Materials Chemistry A, 2013, 1(14): 4462-4467. doi: 10.1039/c3ta01673k
|
[20] |
WANG X F, MA W, SUN K M, et al. Sensing mechanism of SnO2 (110) surface to NO2: density functional theory calculations[J]. Materials Science Forum, 2017, 898: 1947-1959. doi: 10.4028/www.scientific.net/MSF.898.1947
|
[21] |
KRESSE G, FURTHMVLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. doi: 10.1016/0927-0256(96)00008-0
|
[22] |
HAFNER J. Ab-initio simulations of materials using VASP: density-functional theory and beyond[J]. Journal of Computational Chemistry, 2008, 29(13): 2044-2078. doi: 10.1002/jcc.21057
|
[23] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
|
[24] |
CHADI D J. Special points for brillouin-zone integrations[J]. Physical Review B, 1977, 16(4): 1746-1747. doi: 10.1103/PhysRevB.16.1746
|
[25] |
SINGH A K, JANOTTI A, SCHEFFLER M, et al. Sources of electrical conductivity in SnO2[J]. Physical Review Letters, 2008, 101(5): 055502/1-4. http://www.ncbi.nlm.nih.gov/pubmed/18764405
|
[26] |
GARSHEV A V, IVANOV V K, KROTOVA A A, et al. Enhancement of lewis acidity of Cr-doped nanocrystalline SnO2: effect on surface NH3 oxidation and sensory detection pattern[J]. ChemPhysChem, 2019, 20(15): 1985-1996. doi: 10.1002/cphc.201900192
|
[27] |
HENKELMAN G, ARNALDSSON A, JÓNSSON H. A fast and robust algorithm for bader decomposition of charge density[J]. Computational Materials Science, 2006, 36(3): 354-360. doi: 10.1016/j.commatsci.2005.04.010
|
[28] |
TANG W, SANVILLE E, HENKELMAN G. A grid-based bader analysis algorithm without lattice bias[J]. Journal of Physics: Condensed Matter, 2009, 21(8): 84204-84204. doi: 10.1088/0953-8984/21/8/084204
|
[29] |
MAENG S, KIM S W, LEE D H, et al. SnO2 nano-slab as NO2 sensor: identification of the NO2 sensing mechanism on a SnO2 surface[J]. ACS Applied Materials & Interfaces, 2013, 6(1): 357-363. http://europepmc.org/abstract/med/24309131
|
[30] |
WANG Z, ZHANG T, HAN T, et al. Oxygen vacancy engineering for enhanced sensing performances: a case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing[J]. Sensors and Actuators B: Chemical, 2018, 266: 812-822. doi: 10.1016/j.snb.2018.03.169
|