• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LIU Yuting, XU Chao, GU Fenglong. A Theoretical Study of the Enhancement of NO2 Sensing and Adsoption on Indium-Doped SnO2(110) Surface[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 16-22. DOI: 10.6054/j.jscnun.2021003
Citation: LIU Yuting, XU Chao, GU Fenglong. A Theoretical Study of the Enhancement of NO2 Sensing and Adsoption on Indium-Doped SnO2(110) Surface[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 16-22. DOI: 10.6054/j.jscnun.2021003

A Theoretical Study of the Enhancement of NO2 Sensing and Adsoption on Indium-Doped SnO2(110) Surface

More Information
  • Received Date: January 03, 2020
  • Available Online: March 23, 2021
  • To investigate the mechanism of NO2 sensing enhancement, the density functional theory was used to study the adsorption behavior of NO2 molecule on the surface of indium-doped SnO2(110). Theoretical calculations showed that a new electronic state appeared near the Fermi level after indium doping, which increased the conductivity of SnO2, promoted the formation of SnO2(110) defect surface with vacancies and facilitated the pre-adsorption process of active oxygen on the surface. Indium doping may significantly improve the adsorption of NO2 onto the surface. The increased selectivity and sensitivity of NO2 gas is mainly ascribed to the formation of defect surface with oxygen vacancies after indium doping. Moreover, the pre-adsorption of oxygen depends on the specific adsorption sites. The NO2 molecule located at the Sn5c site of the surface gains charges from the surface, generating oxygen vacancies. That is why indium-doped SnO2(110) exhibits excellent performance of NO2 gas-sensitive adsorption.
  • [1]
    HUANG B, ZHAO F, FISHMAN T, et al. Building material use and associated environmental impacts in China 2000—2015[J]. Environmental Science & Technology, 2018, 52(23): 14006-14014. http://www.researchgate.net/publication/328840830_Building_Material_Use_and_Associated_Environmental_Impacts_in_China_2000-2015
    [2]
    ANDRINGA A M, PILIEGO C, KATSOURAS I, et al. NO2 detection and real-time sensing with field-effect transistors[J]. Chemistry of Materials, 2014, 26(1): 773-785. doi: 10.1021/cm4020628
    [3]
    ZHANG D, LIU Z, LI C, et al. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices[J]. Nano Letters, 2004, 4(10): 1919-1924. doi: 10.1021/nl0489283
    [4]
    HESTERBERG T W, BUNN W B, MCCLELLAN R O, et al. Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: evidence for NO2 no-effect levels[J]. Critical Reviews in Toxicology, 2009, 39(9): 743-781. doi: 10.3109/10408440903294945
    [5]
    BOOK S A. Scaling toxicity from laboratory animals to people: an example with nitrogen dioxide[J]. Journal of Toxicology & Environmental Health, 1982, 9(5/6): 719-725. http://www.ncbi.nlm.nih.gov/pubmed/7120506
    [6]
    姜如青, 欧阳剑, 杨辉, 等. In、Ga掺杂SnO2的第一性原理研究[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 1-6. http://journal-n.scnu.edu.cn/article/id/3815

    JIANG R Q, OUYANG J, YANG H, et al. First-principles investigations of the electronic structures and optical properties of SnO2 with In and Ga defects[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(3): 1-6. http://journal-n.scnu.edu.cn/article/id/3815
    [7]
    SHARMA A, TOMAR M, GUPTA V. SnO2 thin film sensor with enhanced response for NO2 gas at lower temperatures[J]. Sensors and Actuators B: Chemical, 2011, 156(2): 743-752. doi: 10.1016/j.snb.2011.02.033
    [8]
    ZHU X, GUO Y, REN H, et al. Enhancing the NO2 gas sensing properties of rGO/SnO2 nanocomposite films by using microporous substrates[J]. Sensors and Actuators B: Chemical, 2017, 248: 560-570. doi: 10.1016/j.snb.2017.04.030
    [9]
    WANG T, HAO J, ZHENG S, et al. Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites[J]. Nano Research, 2018, 11(2): 791-803. doi: 10.1007/s12274-017-1688-y
    [10]
    GAO L, CHENG Z, XIANG Q, et al. Porous corundum-type In2O3 nanosheets: synthesis and NO2 sensing properties[J]. Sensors and Actuators B: Chemical, 2015, 208: 436-443. doi: 10.1016/j.snb.2014.11.053
    [11]
    CHOU P C, CHEN H I, LIU I P, et al. Nitrogen oxide (NO2) gas sensing performance of ZnO nanoparticles (NPs)/sapphire-based sensors[J]. IEEE Sensors Journal, 2015, 15(7): 3759-3763. doi: 10.1109/JSEN.2015.2391271
    [12]
    WEI W, DAI Y, HUANG B. Role of Cu doping in SnO2 sensing properties toward H2S[J]. The Journal of Physical Chemistry C, 2011, 115(38): 18597-18602. doi: 10.1021/jp204170j
    [13]
    LI S, LU Z, YANG Z, et al. The sensing mechanism of Pt-doped SnO2 surface toward CO: a first-principle study[J]. Sensors and Actuators B: Chemical, 2014, 202: 83-92. doi: 10.1016/j.snb.2014.05.071
    [14]
    WANG P, HUI J, YUAN T, et al. Ultrafine nanoparticles of W-doped SnO2 for durable H2S sensors with fast response and recovery[J]. RSC Advances, 2019, 9(20): 11046-11053. doi: 10.1039/C9RA00944B
    [15]
    KIM H J, LEE J H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview[J]. Sensors and Actuators B: Chemical, 2014, 192: 607-627. doi: 10.1016/j.snb.2013.11.005
    [16]
    WANG Z, ZHANG Y, LIU S, et al. Preparation of Ag nanoparticles-SnO2 nanoparticles-reduced graphene oxide hybrids and their application for detection of NO2 at room temperature[J]. Sensors and Actuators B: Chemical, 2016, 222: 893-903. doi: 10.1016/j.snb.2015.09.027
    [17]
    MCCUE J T, YING J Y. SnO2-In2O3 nanocomposites as semiconductor gas sensors for CO and NOx detection[J]. Chemistry of Materials, 2007, 19(5): 1009-1015. doi: 10.1021/cm0617283
    [18]
    KAUR J, KUMAR R, BHATNAGAR M C. Effect of indium-doped SnO2 nanoparticles on NO2 gas sensing properties[J]. Sensors and Actuators B: Chemical, 2007, 126(2): 478-484. doi: 10.1016/j.snb.2007.03.033
    [19]
    CUI S, WEN Z, MATTSON E C, et al. Indium-doped SnO2 nanoparticle-graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2[J]. Journal of Materials Chemistry A, 2013, 1(14): 4462-4467. doi: 10.1039/c3ta01673k
    [20]
    WANG X F, MA W, SUN K M, et al. Sensing mechanism of SnO2 (110) surface to NO2: density functional theory calculations[J]. Materials Science Forum, 2017, 898: 1947-1959. doi: 10.4028/www.scientific.net/MSF.898.1947
    [21]
    KRESSE G, FURTHMVLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. doi: 10.1016/0927-0256(96)00008-0
    [22]
    HAFNER J. Ab-initio simulations of materials using VASP: density-functional theory and beyond[J]. Journal of Computational Chemistry, 2008, 29(13): 2044-2078. doi: 10.1002/jcc.21057
    [23]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [24]
    CHADI D J. Special points for brillouin-zone integrations[J]. Physical Review B, 1977, 16(4): 1746-1747. doi: 10.1103/PhysRevB.16.1746
    [25]
    SINGH A K, JANOTTI A, SCHEFFLER M, et al. Sources of electrical conductivity in SnO2[J]. Physical Review Letters, 2008, 101(5): 055502/1-4. http://www.ncbi.nlm.nih.gov/pubmed/18764405
    [26]
    GARSHEV A V, IVANOV V K, KROTOVA A A, et al. Enhancement of lewis acidity of Cr-doped nanocrystalline SnO2: effect on surface NH3 oxidation and sensory detection pattern[J]. ChemPhysChem, 2019, 20(15): 1985-1996. doi: 10.1002/cphc.201900192
    [27]
    HENKELMAN G, ARNALDSSON A, JÓNSSON H. A fast and robust algorithm for bader decomposition of charge density[J]. Computational Materials Science, 2006, 36(3): 354-360. doi: 10.1016/j.commatsci.2005.04.010
    [28]
    TANG W, SANVILLE E, HENKELMAN G. A grid-based bader analysis algorithm without lattice bias[J]. Journal of Physics: Condensed Matter, 2009, 21(8): 84204-84204. doi: 10.1088/0953-8984/21/8/084204
    [29]
    MAENG S, KIM S W, LEE D H, et al. SnO2 nano-slab as NO2 sensor: identification of the NO2 sensing mechanism on a SnO2 surface[J]. ACS Applied Materials & Interfaces, 2013, 6(1): 357-363. http://europepmc.org/abstract/med/24309131
    [30]
    WANG Z, ZHANG T, HAN T, et al. Oxygen vacancy engineering for enhanced sensing performances: a case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing[J]. Sensors and Actuators B: Chemical, 2018, 266: 812-822. doi: 10.1016/j.snb.2018.03.169

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return