Citation: | XIAO Bao, WEI Lina, LI Pu, JIANG Yuncheng. The Model of Knowledge Graph Embedding with Text and Relation Path[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 103-112. DOI: 10.6054/j.jscnun.2020101 |
[1] |
KALLOUBI F, NFAOUI E H, BEQQALI O E. Microblog semantic context retrieval system based on linked open data and graph-based theory[J]. Expert Systems with Application, 2016, 53:138-148.
|
[2] |
LOPEZ V, UNGER C, CIMIANO P, et al. Evaluating question answering over linked data[J]. Journal of Web Semantics, 2013, 21:3-13.
|
[3] |
贾中浩, 古天龙, 宾辰忠, 等.旅游知识图谱特征学习的景点推荐[J].智能系统学报, 2019, 14(3):430-437.
JIA Z H, GU T L, BIN C Z, et al. Tourism knowledge-graph feature learning for attraction recommendations[J]. CAAI Transactions on Intelligent Systems, 2019, 14(3):430-437.
|
[4] |
刘知远, 孙茂松, 林衍凯, 等.知识表示学习研究进展[J].计算机研究与发展, 2016, 53(2):247-261.
LIU Z Y, SUN M S, LIN Y K, et al. Knowledge representation learning:a review[J]. Journal of Computer Research and Development, 2016, 53(2):247-261.
|
[5] |
BORDES A, USUNIER N, GARCIADURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of Neural Information Proccessings Systems. Cambridge, MA: MIT Press, 2013: 2787-2795.
|
[6] |
WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Procee-dings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAI Press, 2014: 1112-1119.
|
[7] |
LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2015: 2181-2187.
|
[8] |
JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annusl Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Na-tural Language Processing.Stroudsburg, PA: ACL, 2015: 687-696.
|
[9] |
LIN Y, LIU Z, LUAN H, et al. Modeling relation paths for representation learning of knowledge bases[C]//Procee-dings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal: ACL, 2015: 705-714.
|
[10] |
AN B, CHEN B, HAN X P, et al. Accurate text-enhanced knowledge graph representation learning[C]//Procee-dings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. New Orleans, Louisiana: ACL, 2018: 745-755.
|
[11] |
XIE R B, LIU Z Y, JIA J, et al. Representation learning of knowledge graphs with entity descriptions[C]//Procee-dings of the Thirtieth AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI, 2016: 2659-2665.
|
[12] |
TU C C, LIU H, LIU Z Y, et al. Cane: context-aware network embedding for relation modeling[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver, Canada: ACL, 2017: 1722-1731.
|
[13] |
NIE B, SUN S. Knowledge graph embedding via reasoning over entities, relations, and text[J]. Future Generation Computer Systems, 2019, 91:426-433.
|
[14] |
GUAN N, SONG D, LIAO L, et al. Knowledge graph embedding with concepts[J]. Knowledge Based Systems, 2019, 164:38-44.
|
[15] |
WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph and text jointly embedding[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Qatar: ACL, 2014: 1591-1601.
|
[16] |
ZHONG H P, ZHANG J W, WANG Z, et al. Aligning knowledge and text embeddings by entity descriptions[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2015: 267-272.
|
[17] |
LECUN Y, BOSER B, DENKER J, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4):541-551.
|
[18] |
MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2013: 3111-3119.
|
[19] |
FAN M, ZHOU Q, ZHENG T F, et al. Distributed representation learning for knowledge graphs with entity descriptions[J]. Pattern Recognition Letters, 2017, 93:31-37.
|
[20] |
LAO N, COHEN W W. Relational retrieval using a combination of path-constrained random walks[J]. Machine Learning, 2010, 81(1):53-67.
|
[21] |
GRAVES A, SCHMIDHUBER J. Framewise phoneme cla-ssification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18(5):602-610.
|
[22] |
ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation cla-ssification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin: ACL, 2016: 207-212.
|
[23] |
PEROZZI B, ALRFOU R, SKIENA S, et al. DeepWalk: online learning of social representations[C]//Procee-dings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710.
|
[24] |
LIU B. Web data mining:exploring hyperlinks, contents, and usage data[M]. New York:Springer, 2007.
|
[25] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Processings of the 31th Conference on Neural Information Processing Systems. Long Beach, CA: NIPS, 2017: 5998-6008.
|
[26] |
BLEI D M, NG A Y, JORDAN M I, et al. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3:993-1022.
|
[27] |
LIU Y, LIU Z, CHUA T S, et al. Topical word embeddings[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Austin, Texas: AAAI Press, 2015: 2418-2424.
|
[28] |
VO D T, OCK C Y. Learning to classify short text from scientific documents using topic models with various types of knowledge[J]. Expert Systems with Applications, 2015, 42(3):1684-1698.
|
[29] |
BA J L, KIROS J R, HINTON G E. Layer normalization[J]. arXiv, (2016-07-21)[2020-01-28]. http://ar-xiv.org/abs/1607.06450.
|
[30] |
SAIF A, AZIZ M J, OMAR N, et al. Reducing explicit semantic representation vectors using Latent Dirichlet Allocation[J]. Knowledge Based Systems, 2016, 100:145-159.
|
[31] |
HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington: IEEE, 2015: 1026-1034.
|