• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
XIANG Hua, LV Guizhen, LI Shaoshan. The Effect of UV-B Pretreatment on the Drought Response of Arabidopsis uvr8-2 Mutants[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 67-73. DOI: 10.6054/j.jscnun.2020096
Citation: XIANG Hua, LV Guizhen, LI Shaoshan. The Effect of UV-B Pretreatment on the Drought Response of Arabidopsis uvr8-2 Mutants[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 67-73. DOI: 10.6054/j.jscnun.2020096

The Effect of UV-B Pretreatment on the Drought Response of Arabidopsis uvr8-2 Mutants

More Information
  • Received Date: January 12, 2020
  • Available Online: January 04, 2021
  • The effect of UV-B pretreatment on the drought response of Arabidopsis thaliana uvr8-2 mutants and the role of plant hormones in this process were investigated. The following results were obtained. Both morphological observation and physiological indicators showed that UV-B pretreatment significantly improved the drought adaptability of uvr8-2 mutants, which was consistent with the result of research on wild-type Landsberg erecta (Ler). The activities of antioxidant enzymes (SOD, POD, and CAT) were significantly increased upon UV-B pretreatment in Arabidopsis uvr8-2 mutants. The expression of antioxidant enzyme genes (POD and CAT) and the levels of plant hormones (ABA, JA and SA) also were increased. In addition, the degree of cell membrane damage was reduced. The fact that UV-B pretreatment induced the drought adaptability of uvr8-2 mutant implies that the signaling involved in the process is UVR8-independent, namely, the UV-B pretreatment induced drought adaptability by increasing plant hormones such as ABA, JA and SA to enhance the activity of antioxidant enzymes and antioxidant enzyme genes CAT and POD so as to alleviate the withering of leaves and the decreasing of relative water content under drought stress.
  • [1]
    CALDWELL M M, BALLARE C L, BORNMAN J F, et al. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors[J]. Photochemical & Photobiological Sciences, 2003, 2:29-38. http://www.bioone.org/servlet/linkout?suffix=bibr10&dbid=16&doi=10.1653%2F024.096.0112&key=10.1039%2Fb700019g
    [2]
    SIDDIQUI M H, AL-WHAIBI M H, BASA LAH M O. Role of nitric oxide in tolerance of plants to abiotic stress[J]. Protoplasma, 2011, 248(3):447-455. doi: 10.1007/s00709-010-0206-9
    [3]
    MACKERNESS S A H, JOHN C F, JOHN B, et al. Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide[J]. FEBS Letters, 2001, 489(2/3):237-242. http://onlinelibrary.wiley.com/resolve/reference/PMED?id=11165257
    [4]
    FEDINA I, NEDEVA D, GEORGIEVA K, et al. Methyl jas-monate counteract UV-B stress in barley seedlings[J]. Journal of Agronomy and Crop Science, 2009, 195(3):204-212. http://www.onacademic.com/detail/journal_1000034643823810_390f.html
    [5]
    DRILIAS P, KARABOURNIOTIS G, LEVIZOU E, et al. The effects of enhanced UV-B radiation on the Mediterranean evergreen sclerophyll Nerium oleander depend on the extent of summer precipitation[J]. Functional Plant Biology, 1997, 24(3):301-306. http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ0212075444
    [6]
    SCHMIDT A M, ORMROD D P, LIVINGSTON N J, et al. The interaction of ultraviolet-B radiation and water deficit in two Arabidopsis thaliana genotypes[J]. Annals of Botany, 2000, 85:571-575. http://aob.oxfordjournals.org/content/85/4/571.full
    [7]
    HE L H, JIA X Y, GAO Z Q, et al. Genotype-dependent responses of wheat (Triticum aestivum L.) seedlings to drought, UV-B radiation and their combined stresses[J]. African Journal of Biotechnology, 2011, 10(20):4046-4056. http://www.researchgate.net/publication/228492852_Genotype-dependent_responses_of_wheat_Triticum_aestivum_L_seedlings_to_drought_UV-B_radiation_and_their_combined_stresses
    [8]
    JANSEN M A K. Ultraviolet-B radiation effects on plants: induction of morphogenic responses[J]. Physiologia Plantarum, 2002, 116(3):423-429. doi: 10.1034/j.1399-3054.2002.1160319.x
    [9]
    RIZZINI L, FAVORY J J, CLOIX C, et al. Perception of UV-B by the Arabidopsis UVR8 protein[J]. Science, 2011, 332(6025):103-106. doi: 10.1126/science.1200660
    [10]
    WU D, HU Q, YAN Z, et al. Structural basis of ultraviolet-B perception by UVR8[J]. Nature, 2012, 484:214-219. http://europepmc.org/abstract/MED/22388820
    [11]
    QIAN C Z, MAO W W, LIU Y, et al. Dual-source nuclear monomers of UV-B light receptor direct photomorphogenesis in Arabidopsis[J]. Molecular Plant, 2016, 9(12):1671-1674. http://d.g.wanfangdata.com.cn/Periodical_fzzw-e201612014.aspx
    [12]
    CLOIX C, KAISERLI E, HEILMANN M, et al. C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein[J]. Proceedings of the National Academy of Sciences, USA, 2012, 109(40):16366-16370. http://www.ncbi.nlm.nih.gov/pubmed/22988111/
    [13]
    FAVORY J J, STEC A, GRUBER H. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis[J]. EMBO Journal, 2009, 28(5):591-601. doi: 10.1038/emboj.2009.4/full
    [14]
    POULSON M E, BOEGER M R T, DONAHUE R A. Response of photosynthesis to high light and drought for Arabidopsis thaliana grown under a UV-B enhanced light regime[J]. Photosynthesis Research, 2006, 90(1):79-90. doi: 10.1007/s11120-006-9116-2
    [15]
    JIANG L, WANG Y, LI Q F, et al. Arabidopsis STO/BBX24 negatively regulates UV-B signaling by interacting with COP1 and repressing HY5 transcriptional activity[J]. Cell Research, 2012, 22(6):1046-1057. http://europepmc.org/articles/PMC3474703
    [16]
    DIAS M C, OLIVEIRA H, COSTA A, et al. Improving elms performance under drought stress: the pretreatment with abscisic acid[J]. Environmental and Experimental Botany, 2014, 100:64-73. http://www.sciencedirect.com/science/article/pii/S0098847213002244
    [17]
    李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000:267-268.
    [18]
    MAEHLY A C, CHANCE B. The assay of catalases and peroxidases[J]. Methods of Biochemical Analysis, 2006, 1:357-424. http://europepmc.org/abstract/MED/13193536
    [19]
    SINHA A K. Colorimetric assay of catalase[J]. Analytical Biochemistry, 1972, 47(2):389-394. http://qjmed.oxfordjournals.org/lookup/external-ref?access_num=4556490&link_type=MED&atom=%2Fqjmed%2F101%2F6%2F449.atom
    [20]
    YAN B, DAI Q, LIU X, et al. Flooding induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves[J]. Plant Soil, 1996, 179(2):261-268. doi: 10.1007/BF00009336
    [21]
    MAYURA D, MAHESH B, KAUR J P. Changes in antioxidant activity in Gmelina arborea (Verbenaceae) inoculated with Glomus fasciculatum under drought stress[J]. Archives of Phytopathology and Plant Protection, 2011, 44(2):113-126. doi: 10.1080/03235400902927261
    [22]
    李绪行, 殷蔚薏, 邵莉楣, 等.黄腐酸增强小麦抗旱能力的生理生化机制初探[J].植物学通报, 1992, 9(2):44-46. http://www.cnki.com.cn/Article/CJFDTotal-ZWXT199202008.htm

    LI X X, YIN W Y, SHAO L M, et al. Preliminary investigation of physiological and biochemical mechanisms on drought-resistance of wheat enhanced by leaf-spraying fulvic acid[J]. Chinese Bulletin of Botany, 1992, 9(2):44-46. http://www.cnki.com.cn/Article/CJFDTotal-ZWXT199202008.htm
    [23]
    刘星, 苏良辰, 张拜宏, 等.异源表达花生基因AhGLK1对拟南芥glk1glk2突变体表型特征及抗旱性的影响[J].华南师范大学学报(自然科学版), 2020, 52(3):78-84. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=HNSF202003012

    LIU X, SU L C, ZHANG B H, et al. The effect of heterologous expression of Peanut Gene AhGLK1 on the phenotypic characteristics and drought resistance of Arabidopsis glk2glk2 mutants[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3):78-84. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=HNSF202003012
    [24]
    张富存, 何雨红, 郑有飞, 等. UV-B辐射增加对小麦的影响[J].南京气象学院学报, 2003, 26(4):545-551. http://d.wanfangdata.com.cn/Periodical/njqxxyxb200304014

    ZHANG F C, HE Y H, ZHENG Y F, et al. Effect of enhanced UV-B radiation on wheat[J]. Journal of Nanjing Institute of Meteorology, 2003, 26(4):545-551. http://d.wanfangdata.com.cn/Periodical/njqxxyxb200304014
    [25]
    王传海, 郑有飞, 何都良, 等.紫外辐射UV-B增加对小麦株高和节间细胞长度影响的初步研究[J].中国农学通报, 2004, 20(1):77-78. http://www.cnki.com.cn/Article/CJFDTotal-ZNTB200401024.htm

    WANG C H, ZHEN Y F, HE D L, et al. A primary study on plant height and cell length of winter wheat in response to enhanced ultraviolet-B radiation[J]. Chinese Agricultural Science Bulletin, 2004, 20(1):77-78. http://www.cnki.com.cn/Article/CJFDTotal-ZNTB200401024.htm
    [26]
    YIN L, ZHANG M, LI Z, et al. Enhanced UV-B radiation increases glyphosate resistance in velvetleaf (Abutilon theophrasti)[J]. Photochemistry and Photobiology, 2012, 88(6):1428-1432. http://www.ncbi.nlm.nih.gov/pubmed/22943570
    [27]
    POULSON M E, DONAHUE R A, KONVALINKA J, et al. Enhanced tolerance of photosynthesis to high-light and drought stress in Pseudotsuga menziesii seedlings grown in ultraviolet-B radiation[J]. Tree Physiology, 2002, 22(12):829-838. http://treephys.oxfordjournals.org/content/22/12/829.short
    [28]
    VANHAELEWYN L, PRINSE E, STRAETEN D V D, et al. Hormone-controlled UV-B responses in plants[J]. Journal of Experimental Botany, 2016, 67(15):4469-4482. doi: 10.1093/jxb/erw261
    [29]
    李长宁, SRIVASTAVA M K, 农倩, 等.水分胁迫下外源ABA提高甘蔗抗旱性的作用机制[J].作物学报, 2010, 36(5):863-870. http://d.wanfangdata.com.cn/periodical/zuowxb201005020

    LI C N, SRIVASTAVA M K, NONG Q, et al. Mechanism of tolerance to drought in sugarcane plant enhanced by foliage dressing of abscisic acid under water stress[J]. Acta Agronomica Sinica, 2010, 36(5):863-870. http://d.wanfangdata.com.cn/periodical/zuowxb201005020
    [30]
    刘杰.水杨酸对黑麦草抗旱性的影响[D].哈尔滨: 东北林业大学, 2009.

    LIU J. The effect of SA on seedlings drought resistance of Lolium perenne Linn[D]. Harbin: Northeast Forestry University, 2009.
    [31]
    KIM J M, TO T K, MATSUI A, et al. Acetate-mediated novel survival strategy against drought in plants[J]. Nature Plants, 2017, 3(7):17097/1-7. http://europepmc.org/abstract/MED/28650429
    [32]
    易小林, 杨丙贤, 宗学凤, 等.信号分子水杨酸减缓干旱胁迫对紫御谷光合和膜脂过氧化的副效应[J].生态学报, 2011, 31(1):67-74. http://d.wanfangdata.com.cn/periodical/stxb201101008

    YI X L, YANG B X, ZONG X F, et al. Signal chemical salicylic acid mitigates the negative effects of drought on photosynthesis and membrance lipid peroxidation of purple majesty[J]. Acta Ecologica Sinica, 2011, 31(1):67-74. http://d.wanfangdata.com.cn/periodical/stxb201101008
    [33]
    BANDURSKA H, CIESLAK M. The interactive effect of water deficit and UV-B radiation on salicylic acid accumulation in barley roots and leaves[J]. Environmental and Experimental Botany, 2013, 94:9-18. http://www.sciencedirect.com/science/article/pii/S0098847212000652
  • Cited by

    Periodical cited type(2)

    1. 李宪,达举霞,章欢. 四阶两点边值问题n个对称正解的存在性. 华南师范大学学报(自然科学版). 2024(01): 123-127 .
    2. 达举霞. 四阶两点边值问题3个对称正解的存在性. 华南师范大学学报(自然科学版). 2021(01): 90-93 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return